江苏省扬州市梅岭2024届中考五模数学试题含解析_第1页
江苏省扬州市梅岭2024届中考五模数学试题含解析_第2页
江苏省扬州市梅岭2024届中考五模数学试题含解析_第3页
江苏省扬州市梅岭2024届中考五模数学试题含解析_第4页
江苏省扬州市梅岭2024届中考五模数学试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省扬州市梅岭2024届中考五模数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1﹣x)2=108 B.168(1﹣x2)=108C.168(1﹣2x)=108 D.168(1+x)2=1082.分式的值为0,则x的取值为()A.x=-3 B.x=3 C.x=-3或x=1 D.x=3或x=-13.的相反数是()A.2 B.﹣2 C.4 D.﹣4.如图,在中,,,,点分别在上,于,则的面积为()A. B. C. D.5.甲、乙、丙、丁四名射击运动员进行淘汰赛,在相同条件下,每人射击10次,甲、乙两人的成绩如图所示,丙、丁二人的成绩如表所示.欲淘汰一名运动员,从平均数和方差两个因素分析,应淘汰()丙丁平均数88方差1.21.8A.甲 B.乙 C.丙 D.丁6.如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部C的俯角为60°,热气球A与楼的水平距离为120米,这栋楼的高度BC为()A.160米 B.(60+160) C.160米 D.360米7.已知,则的值是A.60 B.64 C.66 D.728.有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有()A.5个B.4个C.3个D.2个9.函数y=的自变量x的取值范围是()A.x≠2 B.x<2 C.x≥2 D.x>210.一次函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.其中正确的序号是(把你认为正确的都填上).12.因式分解:x2﹣4=.13.如图,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,将Rt△AOB绕点O顺时针旋转90°后得到Rt△FOE,将线段EF绕点E逆时针旋转90°后得到线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分的面积是__.14.一元二次方程x2﹣4=0的解是._________15.若xay与3x2yb是同类项,则ab的值为_____.16.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=_________.三、解答题(共8题,共72分)17.(8分)《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?18.(8分)随着社会经济的发展,汽车逐渐走入平常百姓家.某数学兴趣小组随机抽取了我市某单位部分职工进行调查,对职工购车情况分4类(A:车价40万元以上;B:车价在20—40万元;C:车价在20万元以下;D:暂时未购车)进行了统计,并将统计结果绘制成以下条形统计图和扇形统计图.请结合图中信息解答下列问题:(1)调查样本人数为__________,样本中B类人数百分比是_______,其所在扇形统计图中的圆心角度数是________;(2)把条形统计图补充完整;(3)该单位甲、乙两个科室中未购车人数分别为2人和3人,现从中选2人去参观车展,用列表或画树状图的方法,求选出的2人来自不同科室的概率.19.(8分)解不等式组,并写出该不等式组的最大整数解.20.(8分)如图所示,小王在校园上的A处正面观测一座教学楼墙上的大型标牌,测得标牌下端D处的仰角为30°,然后他正对大楼方向前进5m到达B处,又测得该标牌上端C处的仰角为45°.若该楼高为16.65m,小王的眼睛离地面1.65m,大型标牌的上端与楼房的顶端平齐.求此标牌上端与下端之间的距离(≈1.732,结果精确到0.1m).21.(8分)解方程(1);(2)22.(10分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.当每件的销售价为52元时,该纪念品每天的销售数量为件;当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.23.(12分)如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,GD.求证:△ECG≌△GHD;24.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.请画出平移后的△DEF.连接AD、CF,则这两条线段之间的关系是________.

参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】

设每次降价的百分率为x,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是168(1-x),第二次后的价格是168(1-x)2,据此即可列方程求解.【详解】设每次降价的百分率为x,根据题意得:168(1-x)2=1.故选A.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.2、A【解析】

分式的值为2的条件是:(2)分子等于2;(2)分母不为2.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】∵原式的值为2,∴,∴(x-2)(x+3)=2,即x=2或x=-3;又∵|x|-2≠2,即x≠±2.∴x=-3.故选:A.【点睛】此题考查的是对分式的值为2的条件的理解,该类型的题易忽略分母不为2这个条件.3、A【解析】分析:根据只有符号不同的两个数是互为相反数解答即可.详解:的相反数是,即2.故选A.点睛:本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.4、C【解析】

先利用三角函数求出BE=4m,同(1)的方法判断出∠1=∠3,进而得出△ACQ∽△CEP,得出比例式求出PE,最后用面积的差即可得出结论;【详解】∵,

∴CQ=4m,BP=5m,

在Rt△ABC中,sinB=,tanB=,

如图2,过点P作PE⊥BC于E,

在Rt△BPE中,PE=BP•sinB=5m×=3m,tanB=,

∴,

∴BE=4m,CE=BC-BE=8-4m,

同(1)的方法得,∠1=∠3,

∵∠ACQ=∠CEP,

∴△ACQ∽△CEP,

∴,∴,

∴m=,

∴PE=3m=,

∴S△ACP=S△ACB-S△PCB=BC×AC-BC×PE=BC(AC-PE)=×8×(6-)=,故选C.【点睛】本题是相似形综合题,主要考查了相似三角形的判定和性质,三角形的面积的计算方法,判断出△ACQ∽△CEP是解题的关键.5、D【解析】

求出甲、乙的平均数、方差,再结合方差的意义即可判断.【详解】=(6+10+8+9+8+7+8+9+7+7)=8,=[(6-8)2+(10-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2+(7-8)2+(7-8)2]=×13=1.3;=(7+10+7+7+9+8+7+9+9+7)=8,=[(7-8)2+(10-8)2+(7-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(9-8)2+(7-8)2]=×12=1.2;丙的平均数为8,方差为1.2,丁的平均数为8,方差为1.8,故4个人的平均数相同,方差丁最大.故应该淘汰丁.故选D.【点睛】本题考查方差、平均数、折线图等知识,解题的关键是记住平均数、方差的公式.6、C【解析】

过点A作AD⊥BC于点D.根据三角函数关系求出BD、CD的长,进而可求出BC的长.【详解】如图所示,过点A作AD⊥BC于点D.在Rt△ABD中,∠BAD=30°,AD=120m,BD=AD∙tan30°=120×=m;在Rt△ADC中,∠DAC=60°,CD=AD∙tan60°=120×=m.∴BC=BD+DC=m.故选C.【点睛】本题主要考查三角函数,解答本题的关键是熟练掌握三角函数的有关知识,并牢记特殊角的三角函数值.7、A【解析】

将代入原式,计算可得.【详解】解:当时,原式,故选A.【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握完全平方公式.8、C【解析】矩形,线段、菱形是轴对称图形,也是中心对称图形,符合题意;等腰三角形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意.共3个既是轴对称图形又是中心对称图形.故选C.9、D【解析】

根据被开放式的非负性和分母不等于零列出不等式即可解题.【详解】解:∵函数y=有意义,∴x-20,即x>2故选D【点睛】本题考查了根式有意义的条件,属于简单题,注意分母也不能等于零是解题关键.10、B【解析】

由二次函数,可得函数图像经过一、三、四象限,所以不经过第二象限【详解】解:∵,∴函数图象一定经过一、三象限;又∵,函数与y轴交于y轴负半轴,

∴函数经过一、三、四象限,不经过第二象限故选B【点睛】此题考查一次函数的性质,要熟记一次函数的k、b对函数图象位置的影响二、填空题(本大题共6个小题,每小题3分,共18分)11、①②④【解析】分析:∵四边形ABCD是正方形,∴AB=AD。∵△AEF是等边三角形,∴AE=AF。∵在Rt△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)。∴BE=DF。∵BC=DC,∴BC﹣BE=CD﹣DF。∴CE=CF。∴①说法正确。∵CE=CF,∴△ECF是等腰直角三角形。∴∠CEF=45°。∵∠AEF=60°,∴∠AEB=75°。∴②说法正确。如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF。∵∠CAD≠∠DAF,∴DF≠FG。∴BE+DF≠EF。∴③说法错误。∵EF=2,∴CE=CF=。设正方形的边长为a,在Rt△ADF中,,解得,∴。∴。∴④说法正确。综上所述,正确的序号是①②④。12、(x+2)(x-2).【解析】试题分析:直接利用平方差公式分解因式得出x2﹣4=(x+2)(x﹣2).考点:因式分解-运用公式法13、.【解析】

作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积-扇形DEF的面积,利用扇形面积公式计算即可.【详解】解:如图作DH⊥AE于H,AOB=,OA=2,OB=1,AB=,由旋转的性质可知OE=OB=1,DE=EF=AB=,可得△DHE≌△BOA,DH=OB=1,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积-扇形DEF的面积==,故答案:.【点睛】本题主要考查扇形的计算公式,正确表示出阴影部分的面积是计算的关键.14、x=±1【解析】移项得x1=4,∴x=±1.故答案是:x=±1.15、2【解析】试题解析:∵xay与3x2yb是同类项,∴a=2,b=1,则ab=2.16、或【解析】

根据裁开折叠之后平行四边形的面积可得CD的长度为2+4或2+.【详解】如图①,当四边形ABCE为平行四边形时,作AE∥BC,延长AE交CD于点N,过点B作BT⊥EC于点T.∵AB=BC,∴四边形ABCE是菱形.∵∠BAD=∠BCD=90°,∠ABC=150°,∴∠ADC=30°,∠BAN=∠BCE=30°,∴∠NAD=60°,∴∠AND=90°.设BT=x,则CN=x,BC=EC=2x.∵四边形ABCE面积为2,∴EC·BT=2,即2x×x=2,解得x=1,∴AE=EC=2,EN=,∴AN=AE+EN=2+,∴CD=AD=2AN=4+2.如图②,当四边形BEDF是平行四边形,∵BE=BF,∴平行四边形BEDF是菱形.∵∠A=∠C=90°,∠ABC=150°,∴∠ADB=∠BDC=15°.∵BE=DE,∴∠EBD=∠ADB=15°,∴∠AEB=30°.设AB=y,则DE=BE=2y,AE=y.∵四边形BEDF的面积为2,∴AB·DE=2,即2y2=2,解得y=1,∴AE=,DE=2,∴AD=AE+DE=2+.综上所述,CD的值为4+2或2+.【点睛】考核知识点:平行四边形的性质,菱形判定和性质.三、解答题(共8题,共72分)17、12【解析】

设矩形的长为x步,则宽为(60﹣x)步,根据题意列出方程,求出方程的解即可得到结果.【详解】解:设矩形的长为x步,则宽为(60﹣x)步,依题意得:x(60﹣x)=864,整理得:x2﹣60x+864=0,解得:x=36或x=24(不合题意,舍去),∴60﹣x=60﹣36=24(步),∴36﹣24=12(步),则该矩形的长比宽多12步.【点睛】此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.18、(1)50,20%,72°.(2)图形见解析;(3)选出的2人来自不同科室的概率=35【解析】试题分析:(1)根据调查样本人数=A类的人数除以对应的百分比.样本中B类人数百分比=B类人数除以总人数,B类人数所在扇形统计图中的圆心角度数=B类人数的百分比×360°.(2)先求出样本中B类人数,再画图.(3)画树状图并求出选出的2人来自不同科室的概率.试题解析:(1)调查样本人数为4÷8%=50(人),样本中B类人数百分比(50﹣4﹣28﹣8)÷50=20%,B类人数所在扇形统计图中的圆心角度数是20%×360°=72°;(2)如图,样本中B类人数=50﹣4﹣28﹣8=10(人);(3)画树状图为:共有20种可能的结果数,其中选出选出的2人来自不同科室占12种,所以选出的2人来自不同科室的概率=1220考点:1.条形统计图2.扇形统计图3.列表法与树状图法.19、﹣2,﹣1,0【解析】分析:先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.本题解析:,解不等式①得,x≥−2,解不等式②得,x<1,∴不等式组的解集为−2≤x<1.∴不等式组的最大整数解为x=0,20、大型标牌上端与下端之间的距离约为3.5m.【解析】试题分析:将题目中的仰俯角转化为直角三角形的内角的度数,分别求得CE和BE的长,然后求得DE的长,用CE的长减去DE的长即可得到上端和下端之间的距离.试题解析:设AB,CD的延长线相交于点E,∵∠CBE=45°,CE⊥AE,∴CE=BE,∵CE=16.65﹣1.65=15,∴BE=15,而AE=AB+BE=1.∵∠DAE=30°,∴DE==11.54,∴CD=CE﹣DE=15﹣11.54≈3.5(m),答:大型标牌上端与下端之间的距离约为3.5m.21、(1),;(2),.【解析】

(1)利用公式法求解可得;(2)利用因式分解法求解可得.【详解】(1)解:∵,,,∴,∴,∴,;(2)解:原方程化为:,因式分解得:,整理得:,∴或,∴,.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论