湖北省八市2023-2024学年高三第五次模拟考试数学试卷含解析_第1页
湖北省八市2023-2024学年高三第五次模拟考试数学试卷含解析_第2页
湖北省八市2023-2024学年高三第五次模拟考试数学试卷含解析_第3页
湖北省八市2023-2024学年高三第五次模拟考试数学试卷含解析_第4页
湖北省八市2023-2024学年高三第五次模拟考试数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省八市2023-2024学年高三第五次模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列an满足:an=2,n≤5a1A.16 B.17 C.18 D.192.M、N是曲线y=πsinx与曲线y=πcosx的两个不同的交点,则|MN|的最小值为()A.π B.π C.π D.2π3.已知集合,,,则的子集共有()A.个 B.个 C.个 D.个4.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为()A.1605π3 B.6425.已知角的顶点与原点重合,始边与轴的正半轴重合,终边经过点,则()A. B. C. D.6.已知双曲线与双曲线没有公共点,则双曲线的离心率的取值范围是()A. B. C. D.7.已知集合,则集合()A. B. C. D.8.已知函数,关于的方程R)有四个相异的实数根,则的取值范围是(

)A. B. C. D.9.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为()A. B. C. D.10.已知命题,且是的必要不充分条件,则实数的取值范围为()A. B. C. D.11.过点的直线与曲线交于两点,若,则直线的斜率为()A. B.C.或 D.或12.记等差数列的公差为,前项和为.若,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中的系数为________.14.函数的值域为_________.15.以,为圆心的两圆均过,与轴正半轴分别交于,,且满足,则点的轨迹方程为_________.16.直线过圆的圆心,则的最小值是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的短轴长为,离心率,其右焦点为.(1)求椭圆的方程;(2)过作夹角为的两条直线分别交椭圆于和,求的取值范围.18.(12分)已知椭圆的左、右顶点分别为、,上、下顶点分别为,,为其右焦点,,且该椭圆的离心率为;(Ⅰ)求椭圆的标准方程;(Ⅱ)过点作斜率为的直线交椭圆于轴上方的点,交直线于点,直线与椭圆的另一个交点为,直线与直线交于点.若,求取值范围.19.(12分)已知函数的定义域为.(1)求实数的取值范围;(2)设实数为的最小值,若实数,,满足,求的最小值.20.(12分)已知矩阵的一个特征值为4,求矩阵A的逆矩阵.21.(12分)已知函数.(1)若曲线存在与轴垂直的切线,求的取值范围.(2)当时,证明:.22.(10分)已知函数.(1)求函数的零点;(2)设函数的图象与函数的图象交于,两点,求证:;(3)若,且不等式对一切正实数x恒成立,求k的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

由题意可得a1=a2=a3=a4=a5=2,累加法求得a62+【详解】解:an即a1=an⩾6时,a1a1两式相除可得1+a则an2=由a6a7…,ak2=可得aa1且a1正整数k(k⩾5)时,要使得a1则ak+1则k=17,故选:B.【点睛】本题考查与递推数列相关的方程的整数解的求法,注意将题设中的递推关系变形得到新的递推关系,从而可简化与数列相关的方程,本题属于难题.2、C【解析】

两函数的图象如图所示,则图中|MN|最小,设M(x1,y1),N(x2,y2),则x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故选C.3、B【解析】

根据集合中的元素,可得集合,然后根据交集的概念,可得,最后根据子集的概念,利用计算,可得结果.【详解】由题可知:,当时,当时,当时,当时,所以集合则所以的子集共有故选:B【点睛】本题考查集合的运算以及集合子集个数的计算,当集合中有元素时,集合子集的个数为,真子集个数为,非空子集为,非空真子集为,属基础题.4、A【解析】

设球心为O,三棱柱的上底面ΔA1B1C1的内切圆的圆心为O1,该圆与边B【详解】如图,设三棱柱为ABC-A1B1C所以底面ΔA1B1C1为斜边是A1C1则圆O1的半径为O设球心为O,则由球的几何知识得ΔOO1M所以OM=2即球O的半径为25所以球O的体积为43故选A.【点睛】本题考查与球有关的组合体的问题,解答本题的关键有两个:(1)构造以球半径R、球心到小圆圆心的距离d和小圆半径r为三边的直角三角形,并在此三角形内求出球的半径,这是解决与球有关的问题时常用的方法.(2)若直角三角形的两直角边为a,b,斜边为c,则该直角三角形内切圆的半径r=a+b-c5、A【解析】

由已知可得,根据二倍角公式即可求解.【详解】角的顶点与原点重合,始边与轴的正半轴重合,终边经过点,则,.故选:A.【点睛】本题考查三角函数定义、二倍角公式,考查计算求解能力,属于基础题.6、C【解析】

先求得的渐近线方程,根据没有公共点,判断出渐近线斜率的取值范围,由此求得离心率的取值范围.【详解】双曲线的渐近线方程为,由于双曲线与双曲线没有公共点,所以双曲线的渐近线的斜率,所以双曲线的离心率.故选:C【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的取值范围的求法,属于基础题.7、D【解析】

弄清集合B的含义,它的元素x来自于集合A,且也是集合A的元素.【详解】因,所以,故,又,,则,故集合.故选:D.【点睛】本题考查集合的定义,涉及到解绝对值不等式,是一道基础题.8、A【解析】=,当时时,单调递减,时,单调递增,且当,当,

当时,恒成立,时,单调递增且,方程R)有四个相异的实数根.令=则,,即.9、D【解析】

利用列举法,从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有9种情况,由古典概型概率公式可得结果.【详解】《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,这5部专著中有3部产生于汉、魏、晋、南北朝时期.记这5部专著分别为,其中产生于汉、魏、晋、南北朝时期.从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有共10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有,共9种情况,所以所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为.故选D.【点睛】本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有(1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,….,再,…..依次….…这样才能避免多写、漏写现象的发生.10、D【解析】

求出命题不等式的解为,是的必要不充分条件,得是的子集,建立不等式求解.【详解】解:命题,即:,是的必要不充分条件,,,解得.实数的取值范围为.故选:.【点睛】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验.11、A【解析】

利用切割线定理求得,利用勾股定理求得圆心到弦的距离,从而求得,结合,求得直线的倾斜角为,进而求得的斜率.【详解】曲线为圆的上半部分,圆心为,半径为.设与曲线相切于点,则所以到弦的距离为,,所以,由于,所以直线的倾斜角为,斜率为.故选:A【点睛】本小题主要考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.12、C【解析】

由,和,可求得,从而求得和,再验证选项.【详解】因为,,所以解得,所以,所以,,,故选:C.【点睛】本题考查等差数列的通项公式、前项和公式,还考查运算求解能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、80.【解析】

只需找到展开式中的项的系数即可.【详解】展开式的通项为,令,则,故的展开式中的系数为80.故答案为:80.【点睛】本题考查二项式定理的应用,涉及到展开式中的特殊项系数,考查学生的计算能力,是一道容易题.14、【解析】

利用换元法,得到,利用导数求得函数的单调性和最值,即可得到函数的值域,得到答案.【详解】由题意,可得,令,,即,则,当时,,当时,,即在为增函数,在为减函数,又,,,故函数的值域为:.【点睛】本题主要考查了三角函数的最值,以及利用导数研究函数的单调性与最值,其中解答中合理利用换元法得到函数,再利用导数求解函数的单调性与最值是解答的关键,着重考查了推理与预算能力,属于基础题.15、【解析】

根据圆的性质可知在线段的垂直平分线上,由此得到,同理可得,由对数运算法则可知,从而化简得到,由此确定轨迹方程.【详解】,,和的中点坐标为,且在线段的垂直平分线上,,即,同理可得:,,,点的轨迹方程为.故答案为:.【点睛】本题考查动点轨迹方程的求解问题,关键是能够利用圆的性质和对数运算法则构造出满足的方程,由此得到结果.16、【解析】

直线mx﹣ny﹣1=0(m>0,n>0)经过圆x2+y2﹣2x+2y﹣1=0的圆心(1,﹣1),可得m+n=1,再利用“乘1法”和基本不等式的性质即可得出.【详解】∵mx﹣ny﹣1=0(m>0,n>0)经过圆x2+y2﹣2x+2y﹣1=0的圆心(1,﹣1),∴m+n﹣1=0,即m+n=1.∴()(m+n)=22+2=4,当且仅当m=n时取等号.∴则的最小值是4.故答案为:4.【点睛】本题考查了圆的标准方程、“乘1法”和基本不等式的性质,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)由已知短轴长求出,离心率求出关系,结合,即可求解;(2)当直线的斜率都存在时,不妨设直线的方程为,直线与椭圆方程联立,利用相交弦长公式求出,斜率为,求出,得到关于的表达式,根据表达式的特点用“”判别式法求出范围,当有一斜率不存在时,另一条斜率为,根据弦长公式,求出,即可求出结论.【详解】(1)由得,又由得,则,故椭圆的方程为.(2)由(1)知,①当直线的斜率都存在时,由对称性不妨设直线的方程为,由,,设,则,则,由椭圆对称性可设直线的斜率为,则,.令,则,当时,,当时,由得,所以,即,且.②当直线的斜率其中一条不存在时,根据对称性不妨设设直线的方程为,斜率不存在,则,,此时.若设的方程为,斜率不存在,则,综上可知的取值范围是.【点睛】本题考查椭圆标准方程、直线与椭圆的位置关系,注意根与系数关系、弦长公式、函数最值、椭圆性质的合理应用,意在考查逻辑推理、计算求解能力,属于难题.18、(Ⅰ);(Ⅱ),.【解析】

(Ⅰ)由题意可得,的坐标,结合椭圆离心率,及隐含条件列式求得,的值,则椭圆方程可求;(Ⅱ)设直线,求得的坐标,再设直线,求出点的坐标,写出的方程,联立与,可求出的坐标,由,可得关于的函数式,由单调性可得取值范围.【详解】(Ⅰ),,,,,由,得,又,,解得:,,.椭圆的标准方程为;(Ⅱ)设直线,则与直线的交点,又,设直线,联立,消可得.解得,,联立,得,,直线,联立,解得,,,,,,,,函数在上单调递增,,.【点睛】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查运算求解能力,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.19、(1);(2)【解析】

(1)首先通过对绝对值内式子符号的讨论,将不等式转化为一元一次不等式组,再分别解各不等式组,最后求各不等式组解集的并集,得到所求不等式的解集;(2)首先确定m的值,然后利用柯西不等式即可证得题中的不等式.【详解】(1)因为函数定义域为,即恒成立,所以恒成立由单调性可知当时,有最大值为4,即;(2)由(1)知,,由柯西不等式知所以,即的最小值为.当且仅当,,时,等号成立【点睛】本题主要考查绝对值不等式的解法,柯西不等式及其应用,意在考查学生的转化能力和计算求解能力.20、.【解析】

根据特征多项式可得,可得,进而可得矩阵A的逆矩阵.【详解】因为矩阵的特征多项式,所以,所以.因为,且,所以.【点睛】本题考查矩阵的特征多项式以及逆矩阵的求解,是基础题.21、(1)(2)证明见解析【解析】

(1)在上有解,,设,求导根据函数的单调性得到最值,得到答案.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论