福建省龙岩市河田第二中学高三数学理下学期期末试卷含解析_第1页
福建省龙岩市河田第二中学高三数学理下学期期末试卷含解析_第2页
福建省龙岩市河田第二中学高三数学理下学期期末试卷含解析_第3页
福建省龙岩市河田第二中学高三数学理下学期期末试卷含解析_第4页
福建省龙岩市河田第二中学高三数学理下学期期末试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省龙岩市河田第二中学高三数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知a,b都是实数,那么“”是“”的

(A)充分而不必要条件

(B)必要而不充分条件

(C)充分必要条件

(D)既不充分也不必要条件参考答案:D略2.如果复数是纯虚数,则实数的值为(

)A.0

B.2

C.0或3

D.2或3参考答案:B略3.在某中学举行的环保知识竞赛中,将三个年级参赛的学生的成绩进行整理后分为5组,绘制出如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组,已知第二小组的频数是40,则成绩在80~100分的学生人数是(

)A.15

B.18

C.20

D.25参考答案:A4.已知集合,,,则(

)A.{5} B.{1,5} C.{2,5} D.{1,3}参考答案:D【分析】根据集合补集交集的定义进行求解即可.【详解】解:,则,则,故选:D.【点睛】本题主要考查集合的基本运算,结合补集交集的定义是解决本题的关键.比较基础.5.若函数f(x)=kax-a-x(a>0且a≠1)在(-∞,+∞)上既是奇函数又是增函数,则g(x)=loga(x+k)的图象是(

)参考答案:C略6.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B、C、D中选择,其他四个号码可以从0至9这十个数字中选择(数字可以重复),某车主第一个号码(从左到右)只想在数字3、5、6、8、9中选择,其他号码只想在1、3、6、9中选择,则他的车牌号码可选的所有可能情况有.A.180种

B.360种

C.720种

D.960种参考答案:D共有种,选D.7.如图在圆O中,AB,CD是圆O互相垂直的两条直径,现分别以OA,OB,OC,OD为直径作四个圆,在圆O内随机取一点,则此点取自阴影部分的概率是(

)A. B. C. D.参考答案:D【分析】先设出圆O的半径,然后算出阴影部分的面积,再计算出圆O的面积,最后利用几何概型公式求出概率.【详解】设圆O的半径为2,阴影部分为8个全等的弓形组成,设每个小弓形的面积为S,则,圆O的面积为,在圆O内随机取一点,则此点取自阴影部分的概率是,则,故本题选D.【点睛】本题考查了几何概型,正确计算出阴影部分的面积是解题的关键,考查了数学运算能力.8.若等边△ABC的边长为3,平面内一点M满足,则的值为()A.2 B. C. D.﹣2参考答案:A【考点】平面向量数量积的运算.【分析】利用向量的坐标运算和数乘运算、数量积运算即可得出.【解答】解:如图所示,A(,0),B(0,),C(﹣,0),∴=(,),=(3,0),∴=(,)+(3,0)=(2,),∴=+=(,),∴=﹣=(﹣1,),=﹣=(﹣,),∴=﹣1×(﹣)+×=2,故选:A.9.设,,,则(

)A.

B.

C.

D.参考答案:A略10.中国古代“五行”学说认为:物质分“金、木、水、火、土”五种属性,并认为:“金生水、水生木、木生火、火生土、土生金”.从五种不同属性的物质中随机抽取种,则抽到的两种物质不相生的概率为(

)A. B. C. D.参考答案:D从五种不同属性的物质中随机抽取种,共种,而相生的有种,则抽到的两种物质不相生的概率.二、填空题:本大题共7小题,每小题4分,共28分11.已知函数是以2为周期的偶函数,且当时,则的值_______.参考答案:12.已知函数,若函数有4个零点,则实数的取值范围是

.参考答案:13.已知实数x,y满足约束条件,则u=的取值范围为.参考答案:≤u≤【考点】简单线性规划.【专题】数形结合;转化思想;构造法;不等式.【分析】作出不等式组对应的平面区域,根据分式的性质利用分子常数化,利用换元法结合直线斜率的性质进行求解即可.【解答】解:作出不等式组对应的平面区域如图:则x>0,u====3﹣,设k=,则k的几何意义是区域内的点到原点的斜率,由图象知,AO的斜率最小,BO的斜率最大,由得,即B(2,4),由得,即A(3,2),则AO的斜率k=,BO的斜率k=2,即≤k≤2,则u=3﹣=3﹣在≤k≤2上为增函数,则当k=时,函数取得最小值,u=,当k=2时,函数取得最大值,u=,即≤u≤,故答案为:≤u≤【点评】本题主要考查线性规划的应用,利用分式的性质以及换元法是解决本题的关键.注意数形结合.14.给定方程:()x+sinx﹣1=0,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(﹣∞,0)内有且只有一个实数解;④若x0是该方程的实数解,则x0>﹣1.则正确命题是

.参考答案:②③④考点:命题的真假判断与应用.专题:计算题;函数的性质及应用;三角函数的图像与性质.分析:根据正弦函数的符号和指数函数的性质,可得该方程存在小于0的实数解,故①不正确;根据指数函数的图象与正弦函数的有界性,可得方程有无数个正数解,故②正确;根据y=()x﹣1的单调性与正弦函数的有界性,分析可得当x≤﹣1时方程没有实数解,当﹣1<x<0时方程有唯一实数解,由此可得③④都正确.解答: 解:对于①,若α是方程()x+sinx﹣1=0的一个解,则满足()α=1﹣sinα,当α为第三、四象限角时()α>1,此时α<0,因此该方程存在小于0的实数解,得①不正确;对于②,原方程等价于()x﹣1=﹣sinx,当x≥0时,﹣1<()x﹣1≤0,而函数y=﹣sinx的最小值为﹣1且用无穷多个x满足﹣sinx=﹣1,因此函数y=()x﹣1与y=﹣sinx的图象在[0,+∞)上有无穷多个交点因此方程()x+sinx﹣1=0有无数个实数解,故②正确;对于③,当x<0时,由于x≤﹣1时()x﹣1≥1,函数y=()x﹣1与y=﹣sinx的图象不可能有交点当﹣1<x<0时,存在唯一的x满足()x=1﹣sinx,因此该方程在(﹣∞,0)内有且只有一个实数解,得③正确;对于④,由上面的分析知,当x≤﹣1时()x﹣1≥1,而﹣sinx≤1且x=﹣1不是方程的解∴函数y=()x﹣1与y=﹣sinx的图象在(﹣∞,﹣1]上不可能有交点因此只要x0是该方程的实数解,则x0>﹣1.故答案为:②③④点评:本题给出含有指数式和三角函数式的方程,讨论方程解的情况.着重考查了指数函数的单调性、三角函数的周期性和有界性、函数的值域求法等知识,属于中档题.15.给出30行30列的数表A:,其特点是每行每列都构成等差数列,记数表主对角线上的数1,10,21,34,…,1074按顺序构成数列{bn},存在正整数s、t(1<s<t)使b1,bs,bt成等差数列,试写出一组(s,t)的值.参考答案:(17,25)考点:等差数列的通项公式;数列与函数的综合.专题:计算题;等差数列与等比数列.分析:由题意可得,b2﹣b1=9b3﹣b2=11…bn﹣bn﹣1=2n+5,利用叠加可求bn,然后由b1,bs,bt成等差数列可得2bs=b1+bt,代入通项后即可求解满足题意的t,s解答:解:由题意可得,b2﹣b1=9b3﹣b2=11…bn﹣bn﹣1=2n+5以上n﹣1个式子相加可得,bn﹣b1=9+11+…+2n+5=n2+6n﹣7∴bn=n2+6n﹣6∵b1,bs,bt成等差数列∴2bs=b1+bt∴2(s2+6s﹣6)=1+t2+6t﹣6整理可得,2(s+3)2=(t+3)2+16∵1<s<t≤30且s,t∈N*经检验当s=17,t=25时符合题意故答案为:(17,25)点评:本题主要考查了数列的通项公式的求解,要注意叠加法的应用,属于公式的灵活应用16.设函数由方程确定,下列结论正确的是

(请将你认为正确的序号都填上)①是上的单调递减函数;②对于任意,恒成立;③对于任意,关于的方程都有解;④存在反函数,且对于任意,总有成立.参考答案:①②③④17.若函数为奇函数,则m=____.参考答案:1试题分析:此函数的定义域为,因为为奇函数,所以,即,解得.考点:函数的奇偶性.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(14分)(2010?安徽)如图,在多面体ABCDEF中,四边形ABCD是正方形,EF∥AB,EF⊥FB,AB=2EF,∠BFC=90°,BF=FC,H为BC的中点.(1)求证:FH∥平面EDB;(2)求证:AC⊥平面EDB;(3)求二面角B﹣DE﹣C的大小.参考答案:考点: 直线与平面平行的判定;直线与平面垂直的判定;与二面角有关的立体几何综合题.专题: 综合题.分析: (1)设AC于BD交于点G,则G为AC的中点,连接EG,GH,又H为BC的中点,可得四边形EFHG为平行四边形,然后利用直线与平面平行判断定理进行证明;(2)因为四边形ABCD为正方形,有AB⊥BC,又EF∥AB,可得EF⊥BC,要证FH⊥平面ABCD,FH⊥平面ABCD,从而求解.(3)在平面CDEF内过点F作FK⊥DE交DE的延长线与k,可知∠FKB为二面角B﹣DE﹣C的一个平面角,然后设EF=1,在直角三角形中进行求证.解答: 证明:(1)设AC于BD交于点G,则G为AC的中点,连接EG,GH,又H为BC的中点,∴GH∥AB且GH=AB,又EF∥AB且EF=AB,∴EF∥GH且EF=GH,∴四边形EFHG为平行四边形∴EG∥FH,而EG?平面EDB,∴FH∥平面EDB.(2)由四边形ABCD为正方形,有AB⊥BC,又EF∥AB,∴EF⊥BC而EF⊥FB,∴EF⊥平面BFC,∴EF⊥FH,∴AB⊥FH,又BF=FC,H为BC的中点,∴FH⊥BC∴FH⊥平面ABCD,∴FH⊥BC,FH⊥AC,又FH∥EG,∴AC⊥EG又AC⊥BD,EG∩BD=G,∴AC⊥平面EDB,(3)EF⊥FB,∠BFC=90°,∴BF⊥平面CDEF,在平面CDEF内过点F作FK⊥DE交DE的延长线与k,则∠FKB为二面角B﹣DE﹣C的一个平面角,设EF=1,则AB=2,FC=,DE=,又EF∥DC,∴∠KEF=∠EDC,∴sin∠EDC=sin∠KEF=,∴FK=EFsin∠KEF=,tan∠FKB==,∴∠FKB=60°,∴二面角B﹣DE﹣C为60°.点评: 此题考查直线与平面平行的判断及平面与平面垂直的判断,此类问题一般先证明两个面平行,再证直线和面平行,这种做题思想要记住,此类立体几何题是每年高考必考的一道大题,同学们要课下要多练习.19.(20分)如图,在海岸线EF一侧有一休闲游乐场,游乐场的前一部分边界为曲线段FGBC,该曲线段是函数y=Asin(ωx+?)(A>0,ω>0,?∈(0,π)),x∈[﹣4,0]的图象,图象的最高点为B(﹣1,2).边界的中间部分为长1千米的直线段CD,且CD∥EF.游乐场的后一部分边界是以O为圆心的一段圆弧.(1)求曲线段FGBC的函数表达式;(2)曲线段FGBC上的入口G距海岸线EF最近距离为1千米,现准备从入口G修一条笔直的景观路到O,求景观路GO长;(3)如图,在扇形ODE区域内建一个平行四边形休闲区OMPQ,平行四边形的一边在海岸线EF上,一边在半径OD上,另外一个顶点P在圆弧上,且∠POE=θ,求平行四边形休闲区OMPQ面积的最大值及此时θ的值.参考答案:考点: 在实际问题中建立三角函数模型.专题: 计算题;应用题;作图题;函数的性质及应用.分析: (1)由题意可得A=2,T=12,代入点求?,从而求解析式;(2)令求解x,从而求景观路GO的长;(3)作图求平行四边形的面积SOMPQ=OM?PP1=(2cosθ﹣sinθ)2sinθ=sin(2θ+)﹣,θ∈(0,);从而求最值.解答: 解:(1)由已知条件,得A=2,又∵,又∵当x=﹣1时,有,∴曲线段FBC的解析式为.(2)由得,x=6k+(﹣1)k﹣4(k∈Z),又∵x∈[﹣4,0],∴k=0,x=﹣3,∴G(﹣3,1),;∴景观路GO长为千米.(3)如图,,作PP1⊥x轴于P1点,在Rt△OPP1中,PP1=OPsinθ=2sinθ,在△OMP中,=,∴OM==2cosθ﹣sinθ,SOMPQ=OM?PP1=(2cosθ﹣sinθ)2sinθ=sin(2θ+)﹣,θ∈(0,);当2θ+=时,即θ=时,平行四边形面积有最大值为(平方千米).点评: 本题考查了三角函数在实际问题中的应用,同时考查了学生的作图能力,属于中档题.20.(本小题满分12分)节日期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段后得到如下图所示的频率分布直方图.(Ⅰ)此调查公司在采样中用到的是什么抽样方法?(Ⅱ)求这40辆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论