山东省淄博市市级名校2024年中考数学全真模拟试题含解析_第1页
山东省淄博市市级名校2024年中考数学全真模拟试题含解析_第2页
山东省淄博市市级名校2024年中考数学全真模拟试题含解析_第3页
山东省淄博市市级名校2024年中考数学全真模拟试题含解析_第4页
山东省淄博市市级名校2024年中考数学全真模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省淄博市市级名校2024年中考数学全真模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是()A.74 B.44 C.42 D.402.已知点M、N在以AB为直径的圆O上,∠MON=x°,∠MAN=y°,则点(x,y)一定在()A.抛物线上 B.过原点的直线上 C.双曲线上 D.以上说法都不对3.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A.3,-1 B.1,-3 C.-3,1 D.-1,34.关于反比例函数,下列说法正确的是()A.函数图像经过点(2,2); B.函数图像位于第一、三象限;C.当时,函数值随着的增大而增大; D.当时,.5.在3,0,-2,-2四个数中,最小的数是()A.3 B.0 C.-2 D.-26.如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A10B10O=()A. B. C. D.7.如图的平面图形绕直线l旋转一周,可以得到的立体图形是()A. B. C. D.8.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是()A.①② B.②④ C.②③ D.③④9.已知x=2﹣3,则代数式(7+43)x2+(2+3)x+3的值是()A.0 B.3 C.2+3 D.2﹣310.如图,将一副三角板如此摆放,使得BO和CD平行,则∠AOD的度数为()A.10° B.15° C.20° D.25°二、填空题(共7小题,每小题3分,满分21分)11.函数y=中,自变量x的取值范围为_____.12.一机器人以0.2m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.13.当a=3时,代数式的值是______.14.化简__________.15.计算:a6÷a3=_________.16.若式子有意义,则x的取值范围是_____________.17.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为_____.三、解答题(共7小题,满分69分)18.(10分)(1)计算:|﹣3|﹣﹣2sin30°+(﹣)﹣2(2)化简:.19.(5分)问题提出(1)如图①,在矩形ABCD中,AB=2AD,E为CD的中点,则∠AEB∠ACB(填“>”“<”“=”);问题探究(2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;问题解决(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.20.(8分)某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:本次调查的学生有多少人?补全上面的条形统计图;扇形统计图中C对应的中心角度数是;若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?21.(10分)计算:3tan30°+|2﹣|﹣(3﹣π)0﹣(﹣1)2018.22.(10分)如图,在平面直角坐标系中,反比例函数的图像与边长是6的正方形的两边,分别相交于,两点.若点是边的中点,求反比例函数的解析式和点的坐标;若,求直线的解析式及的面积23.(12分)先化简,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=.24.(14分)如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F.(1)求证:;(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;(3)若PE=1,求△PBD的面积.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.考点:众数.2、B【解析】

由圆周角定理得出∠MON与∠MAN的关系,从而得出x与y的关系式,进而可得出答案.【详解】∵∠MON与∠MAN分别是弧MN所对的圆心角与圆周角,∴∠MAN=∠MON,∴,∴点(x,y)一定在过原点的直线上.故选B.【点睛】本题考查了圆周角定理及正比例函数图像的性质,熟练掌握圆周角定理是解答本题的关键.3、A【解析】

根据题意可得方程组,再解方程组即可.【详解】由题意得:,解得:,故选A.4、C【解析】

直接利用反比例函数的性质分别分析得出答案.【详解】A、关于反比例函数y=-,函数图象经过点(2,-2),故此选项错误;B、关于反比例函数y=-,函数图象位于第二、四象限,故此选项错误;C、关于反比例函数y=-,当x>0时,函数值y随着x的增大而增大,故此选项正确;D、关于反比例函数y=-,当x>1时,y>-4,故此选项错误;故选C.【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.5、C【解析】

根据比较实数大小的方法进行比较即可.根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】因为正数大于负数,两个负数比较大小,绝对值较大的数反而较小,所以-2<-2所以最小的数是-2,故选C.【点睛】此题主要考查了实数的大小的比较,正数都大于0,负数都小于0,两个负数绝对值大的反而小.6、B【解析】

根据等腰三角形两底角相等用α表示出∠A2B2O,依此类推即可得到结论.【详解】∵B1A2=B1B2,∠A1B1O=α,∴∠A2B2O=α,同理∠A3B3O=×α=α,∠A4B4O=α,∴∠AnBnO=α,∴∠A10B10O=,故选B.【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.7、B【解析】

根据面动成体以及长方形绕一边所在直线旋转一周得圆柱即可得答案.【详解】由图可知所给的平面图形是一个长方形,长方形绕一边所在直线旋转一周得圆柱,故选B.【点睛】本题考查了点、线、面、体,熟记各种常见平面图形旋转得到的立体图形是解题关键.8、D【解析】试题分析:首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确;根据客车数列方程,应该为,②错误,③正确;所以正确的是③④.故选D.考点:由实际问题抽象出一元一次方程.9、C【解析】

把x的值代入代数式,运用完全平方公式和平方差公式计算即可【详解】解:当x=2﹣3时,(7+43)x2+(2+3)x+3=(7+43)(2﹣3)2+(2+3)(2﹣3)+3=(7+43)(7-43)+1+3=49-48+1+3=2+3故选:C.【点睛】此题考查二次根式的化简求值,关键是代入后利用完全平方公式和平方差公式进行计算.10、B【解析】

根据题意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根据平行线的性质即可解答【详解】根据题意可知∠AOB=∠ABO=45°,∠DOC=30°∵BO∥CD∴∠BOC=∠DCO=90°∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15°故选B【点睛】此题考查三角形内角和,平行线的性质,解题关键在于利用平行线的性质得到角相等二、填空题(共7小题,每小题3分,满分21分)11、x≠1.【解析】

该函数是分式,分式有意义的条件是分母不等于0,故分母x-1≠0,解得x的范围.【详解】根据题意得:x−1≠0,解得:x≠1.故答案为x≠1.【点睛】本题考查了函数自变量的取值范围,解题的关键是熟练的掌握分式的意义.12、240【解析】根据图示,得出机器人的行走路线是沿着一个正八边形的边长行走一周,是解决本题的关键,考察了计算多边形的周长,本题中由于机器人最后必须回到起点,可知此机器人一共转了360°,我们可以计算机器人所转的回数,即360°÷45°=8,则机器人的行走路线是沿着一个正八边形的边长行走一周,故机器人一共行走6×8=48m,根据时间=路程÷速度,即可得出结果.本题解析:依据题中的图形,可知机器人一共转了360°,∵360°÷45°=8,∴机器人一共行走6×8=48m.∴该机器人从开始到停止所需时间为48÷0.2=240s.13、1.【解析】

先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【详解】原式=÷=•=,当a=3时,原式==1,故答案为:1.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.14、【解析】

根据分式的运算法则先算括号里面,再作乘法亦可利用乘法对加法的分配律求解.【详解】解:法一、=(-)==2-m.

故答案为:2-m.

法二、原式===1-m+1

=2-m.

故答案为:2-m.【点睛】本题考查分式的加减和乘法,解决本题的关键是熟练运用运算法则或运算律.15、a1【解析】

根据同底数幂相除,底数不变指数相减计算即可【详解】a6÷a1=a6﹣1=a1.故答案是a1【点睛】同底数幂的除法运算性质16、x<【解析】由题意得:1﹣2x>0,解得:,故答案为.17、【解析】试题解析:连接∵四边形ABCD是矩形,∴CE=BC=4,∴CE=2CD,由勾股定理得:∴阴影部分的面积是S=S扇形CEB′−S△CDE故答案为三、解答题(共7小题,满分69分)18、(1)2;(2)x﹣y.【解析】分析:(1)本题涉及了二次根式的化简、绝对值、负指数幂及特殊三角函数值,在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.(2)原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.详解:(1)原式=3﹣4﹣2×+4=2;(2)原式=•=x﹣y.点睛:(1)本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式的化简、绝对值及特殊三角函数值等考点的运算;(2)考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19、(1)>;(2)当点P位于CD的中点时,∠APB最大,理由见解析;(3)4米.【解析】

(1)过点E作EF⊥AB于点F,由矩形的性质和等腰三角形的判定得到:△AEF是等腰直角三角形,易证∠AEB=90°,而∠ACB<90°,由此可以比较∠AEB与∠ACB的大小(2)假设P为CD的中点,作△APB的外接圆⊙O,则此时CD切⊙O于P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB与∠APB均为⊙O中弧AB所对的角,则∠AFB=∠APB,即可判断∠APB与∠AEB的大小关系,即可得点P位于何处时,∠APB最大;(3)过点E作CE∥DF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.【详解】解:(1)∠AEB>∠ACB,理由如下:如图1,过点E作EF⊥AB于点F,∵在矩形ABCD中,AB=2AD,E为CD中点,∴四边形ADEF是正方形,∴∠AEF=45°,同理,∠BEF=45°,∴∠AEB=90°.而在直角△ABC中,∠ABC=90°,∴∠ACB<90°,∴∠AEB>∠ACB.故答案为:>;(2)当点P位于CD的中点时,∠APB最大,理由如下:假设P为CD的中点,如图2,作△APB的外接圆⊙O,则此时CD切⊙O于点P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE,BF,∵∠AFB是△EFB的外角,∴∠AFB>∠AEB,∵∠AFB=∠APB,∴∠APB>∠AEB,故点P位于CD的中点时,∠APB最大:(3)如图3,过点E作CE∥DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OA长为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,由题意知DP=OQ=,∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,BD=11.6米,AB=3米,CD=EF=1.6米,∴OA=11.6+3﹣1.6=13米,∴DP=米,即小刚与大楼AD之间的距离为4米时看广告牌效果最好.【点睛】本题考查了矩形的性质,正方形的判定与性质,圆周角定理的推论,三角形外角的性质,线段垂直平分线的性质,勾股定理等知识,难度较大,熟练掌握各知识点并正确作出辅助圆是解答本题的关键.20、(1)150人;(2)补图见解析;(3)144°;(4)300盒.【解析】

(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.【详解】解:(1)本次调查的学生有30÷20%=150人;(2)C类别人数为150﹣(30+45+15)=60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360°×=144°故答案为144°(4)600×()=300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.21、1.【解析】

直接利用绝对值的性质以及特殊角的三角函数值分别化简得出答案.【详解】3tan31°+|2﹣|﹣(3﹣π)1﹣(﹣1)2118=3×+2﹣﹣1﹣1=+2﹣﹣1﹣1=1.【点睛】本题考查了绝对值的性质以及特殊角的三角函数值,解题的关键是熟练的掌握绝对值的性质以及特殊角的三角函数值.22、(1),N(3,6);(2)y=-x+2,S△OMN=3.【解析】

(1)求出点M坐标,利用待定系数法即可求得反比例函数的解析式,把N点的纵坐标代入解析式即可求得横坐标;

(2)根据M点的坐标与反比例函数的解析式,求得N点的坐标,利用待定系数法求得直线MN的解析式,根据△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN即可得到答案.【详解】解:(1)∵点M是AB边的中点,∴M(6,3).∵反比例函数y=经过点M,∴3=.∴k=1.∴反比例函数的解析式为y=.当y=6时,x=3,∴N(3,6).(2)由题意,知M(6,2),N(2,6).设直线MN的解析式为y=ax+b,则,解得,∴直线MN的解析式为y=-x+2.∴S△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN=36-6-6-2=3.【点睛】本题考查了反比

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论