版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年湖北省宜昌市当阳市重点中学中考三模数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个 B.3个 C.2个 D.1个2.如图,已知BD与CE相交于点A,ED∥BC,AB=8,AC=12,AD=6,那么AE的长等于()A.4 B.9 C.12 D.163.如图,在中,,,,则等于()A. B. C. D.4.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A. B. C. D.5.估算的运算结果应在(
)A.2到3之间 B.3到4之间C.4到5之间 D.5到6之间6.若关于x的方程是一元二次方程,则m的取值范围是()A.. B.. C. D..7.如图,在正方形ABCD中,AB=,P为对角线AC上的动点,PQ⊥AC交折线A﹣D﹣C于点Q,设AP=x,△APQ的面积为y,则y与x的函数图象正确的是()A. B.C. D.8.在﹣3,0,4,这四个数中,最大的数是()A.﹣3 B.0 C.4 D.9.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20° B.35° C.40° D.70°10.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.对于任意不相等的两个实数,定义运算※如下:※=,如3※2==.那么8※4=.12.如果a2﹣b2=8,且a+b=4,那么a﹣b的值是__.13.如图,角α的一边在x轴上,另一边为射线OP,点P(2,2),则tanα=_____.14.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:求作:的内切圆.小明的作法如下:如图2,作,的平分线BE和CF,两线相交于点O;过点O作,垂足为点D;
点O为圆心,OD长为半径作所以,即为所求作的圆.请回答:该尺规作图的依据是______.15.已知ab=﹣2,a﹣b=3,则a3b﹣2a2b2+ab3的值为_______.16.因式分解:9x﹣x2=_____.三、解答题(共8题,共72分)17.(8分)如图,⊙O的半径为4,B为⊙O外一点,连结OB,且OB=6.过点B作⊙O的切线BD,切点为点D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为点C.(1)求证:AD平分∠BAC;(2)求AC的长.18.(8分)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.求证:AE∥CF.19.(8分)如图,数轴上的点A、B、C、D、E表示连续的五个整数,对应数分别为a、b、c、d、e.(1)若a+e=0,则代数式b+c+d=;(2)若a是最小的正整数,先化简,再求值:a+1a-2(3)若a+b+c+d=2,数轴上的点M表示的实数为m(m与a、b、c、d、e不同),且满足MA+MD=3,则m的范围是.20.(8分)已知抛物线的开口向上顶点为P(1)若P点坐标为(4,一1),求抛物线的解析式;(2)若此抛物线经过(4,一1),当-1≤x≤2时,求y的取值范围(用含a的代数式表示)(3)若a=1,且当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,求b的值21.(8分)如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x轴与y轴上,已知OA=6,OB=1.点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB的方向运动,当点P与点B重合时停止运动,运动时间为t秒.(1)当点P经过点C时,求直线DP的函数解析式;(2)如图②,把长方形沿着OP折叠,点B的对应点B′恰好落在AC边上,求点P的坐标.(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.22.(10分)如图所示,直线y=﹣2x+b与反比例函数y=交于点A、B,与x轴交于点C.(1)若A(﹣3,m)、B(1,n).直接写出不等式﹣2x+b>的解.(2)求sin∠OCB的值.(3)若CB﹣CA=5,求直线AB的解析式.23.(12分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字2,3、1.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).24.先化简,再求值:(1﹣)÷,其中x是不等式组的整数解
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】
解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③错误;∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.故选:B.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.2、B【解析】
由于ED∥BC,可证得△ABC∽△ADE,根据相似三角形所得比例线段,即可求得AE的长.【详解】∵ED∥BC,∴△ABC∽△ADE,∴=,∴==,即AE=9;∴AE=9.故答案选B.【点睛】本题考查的知识点是相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.3、A【解析】分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得.详解:在Rt△ABC中,∵AB=10、AC=8,∴BC=,∴sinA=.故选:A.点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.4、C【解析】
连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴阴影部分的面积=,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.5、D【解析】
解:=,∵2<<3,∴在5到6之间.故选D.【点睛】此题主要考查了估算无理数的大小,正确进行计算是解题关键.6、A【解析】
根据一元二次方程的定义可得m﹣1≠0,再解即可.【详解】由题意得:m﹣1≠0,解得:m≠1,故选A.【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.7、B【解析】∵在正方形ABCD中,AB=,∴AC=4,AD=DC=,∠DAP=∠DCA=45o,当点Q在AD上时,PA=PQ,∴DP=AP=x,∴S=;当点Q在DC上时,PC=PQCP=4-x,∴S=;所以该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下,故选B.【点睛】本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在AP、DC上这两种情况.8、C【解析】试题分析:根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小.因此,在﹣3,0,1,这四个数中,﹣3<0<<1,最大的数是1.故选C.9、B【解析】
先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.【详解】∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选B.【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.10、C【解析】看到的棱用实线体现.故选C.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】
根据新定义的运算法则进行计算即可得.【详解】∵※=,∴8※4=,故答案为.12、1.【解析】
根据(a+b)(a-b)=a1-b1,可得(a+b)(a-b)=8,再代入a+b=4可得答案.【详解】∵a1-b1=8,
∴(a+b)(a-b)=8,
∵a+b=4,
∴a-b=1,
故答案是:1.【点睛】考查了平方差,关键是掌握(a+b)(a-b)=a1-b1.13、【解析】解:过P作PA⊥x轴于点A.∵P(2,),∴OA=2,PA=,∴tanα=.故答案为.点睛:本题考查了解直角三角形,正切的定义,坐标与图形的性质,熟记三角函数的定义是解题的关键.14、到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.【解析】
根据三角形的内切圆,三角形的内心的定义,角平分线的性质即可解答.【详解】解:该尺规作图的依据是到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线;故答案为到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.【点睛】此题主要考查了复杂作图,三角形的内切圆与内心,关键是掌握角平分线的性质.15、﹣18【解析】
要求代数式a3b﹣2a2b2+ab3的值,而代数式a3b﹣2a2b2+ab3恰好可以分解为两个已知条件ab,(a﹣b)的乘积,因此可以运用整体的数学思想来解答.【详解】a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2,当a﹣b=3,ab=﹣2时,原式=﹣2×32=﹣18,故答案为:﹣18.【点睛】本题考查了因式分解在代数式求值中的应用,熟练掌握因式分解的方法以及运用整体的数学思想是解题的关键.16、x(9﹣x)【解析】试题解析:故答案为点睛:常见的因式分解的方法:提取公因式法,公式法,十字相乘法.三、解答题(共8题,共72分)17、(1)证明见解析;(2)AC=.【解析】(1)证明:连接OD.∵BD是⊙O的切线,∴OD⊥BD.∵AC⊥BD,∴OD∥AC,∴∠2=∠1.∵OA=OD.∴∠1=∠1,∴∠1=∠2,即AD平分∠BAC.(2)解:∵OD∥AC,∴△BOD∽△BAC,∴,即.解得.18、证明见解析【解析】试题分析:通过全等三角形△ADE≌△CBF的对应角相等证得∠AED=∠CFB,则由平行线的判定证得结论.证明:∵平行四边形ABCD中,AD=BC,AD∥BC,∴∠ADE=∠CBF.∵在△ADE与△CBF中,AD=BC,∠ADE=∠CBF,DE=BF,∴△ADE≌△CBF(SAS).∴∠AED=∠CFB.∴AE∥CF.19、(1)0;(1)a+2a+1,3【解析】
(1)根据a+e=0,可知a与e互为相反数,则c=0,可得b=-1,d=1,代入可得代数式b+c+d的值;(1)根据题意可得:a=1,将分式计算并代入可得结论即可;(3)先根据A、B、C、D、E为连续整数,即可求出a的值,再根据MA+MD=3,列不等式可得结论.【详解】解:(1)∵a+e=0,即a、e互为相反数,∴点C表示原点,∴b、d也互为相反数,则a+b+c+d+e=0,故答案为:0;(1)∵a是最小的正整数,∴a=1,则原式=÷[+]=÷=•=,当a=1时,原式==;(3)∵A、B、C、D、E为连续整数,∴b=a+1,c=a+1,d=a+3,e=a+4,∵a+b+c+d=1,∴a+a+1+a+1+a+3=1,4a=﹣4,a=﹣1,∵MA+MD=3,∴点M再A、D两点之间,∴﹣1<x<1,故答案为:﹣1<x<1.【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的相关知识点.20、(1);(2)1-4a≤y≤4+5a;(3)b=2或-10.【解析】
(1)将P(4,-1)代入,可求出解析式
(2)将(4,-1)代入求得:b=-4a-1,再代入对称轴直线中,可判断,且开口向上,所以y随x的增大而减小,再把x=-1,x=2代入即可求得.
(3)观察图象可得,当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,这些点可能为x=0,x=1,三种情况,再根据对称轴在不同位置进行讨论即可.【详解】解:(1)由此抛物线顶点为P(4,-1),所以y=a(x-4)2-1=ax2-8ax+16a-1,即16a-1=3,解得a=,b=-8a=-2所以抛物线解析式为:;(2)由此抛物线经过点C(4,-1),所以一1=16a+4b+3,即b=-4a-1.因为抛物线的开口向上,则有其对称轴为直线,而所以当-1≤x≤2时,y随着x的增大而减小当x=-1时,y=a+(4a+1)+3=4+5a当x=2时,y=4a-2(4a+1)+3=1-4a所以当-1≤x≤2时,1-4a≤y≤4+5a;(3)当a=1时,抛物线的解析式为y=x2+bx+3∴抛物线的对称轴为直线由抛物线图象可知,仅当x=0,x=1或x=-时,抛物线上的点可能离x轴最远分别代入可得,当x=0时,y=3当x=1时,y=b+4当x=-时,y=-+3①当一<0,即b>0时,3≤y≤b+4,由b+4=6解得b=2②当0≤-≤1时,即一2≤b≤0时,△=b2-12<0,抛物线与x轴无公共点由b+4=6解得b=2(舍去);③当,即b<-2时,b+4≤y≤3,由b+4=-6解得b=-10综上,b=2或-10【点睛】本题考查了二次函数的性质,待定系数法求函数解析式,以及最值问题,关键是对称轴在不同的范围内,抛物线上的点到x轴距离的最大值的点不同.21、(1)y=x+2;(2)y=x+2;(2)①S=﹣2t+16,②点P的坐标是(,1);(3)存在,满足题意的P坐标为(6,6)或(6,2+2)或(6,1﹣2).【解析】分析:(1)设直线DP解析式为y=kx+b,将D与B坐标代入求出k与b的值,即可确定出解析式;
(2)①当P在AC段时,三角形ODP底OD与高为固定值,求出此时面积;当P在BC段时,底边OD为固定值,表示出高,即可列出S与t的关系式;
②设P(m,1),则PB=PB′=m,根据勾股定理求出m的值,求出此时P坐标即可;
(3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可.详解:(1)如图1,∵OA=6,OB=1,四边形OACB为长方形,∴C(6,1).设此时直线DP解析式为y=kx+b,把(0,2),C(6,1)分别代入,得,解得则此时直线DP解析式为y=x+2;(2)①当点P在线段AC上时,OD=2,高为6,S=6;当点P在线段BC上时,OD=2,高为6+1﹣2t=16﹣2t,S=×2×(16﹣2t)=﹣2t+16;②设P(m,1),则PB=PB′=m,如图2,∵OB′=OB=1,OA=6,∴AB′==8,∴B′C=1﹣8=2,∵PC=6﹣m,∴m2=22+(6﹣m)2,解得m=则此时点P的坐标是(,1);(3)存在,理由为:若△BDP为等腰三角形,分三种情况考虑:如图3,①当BD=BP1=OB﹣OD=1﹣2=8,在Rt△BCP1中,BP1=8,BC=6,根据勾股定理得:CP1==2,∴AP1=1﹣2,即P1(6,1﹣2);②当BP2=DP2时,此时P2(6,6);③当DB=DP3=8时,在Rt△DEP3中,DE=6,根据勾股定理得:P3E==2,∴AP3=AE+EP3=2+2,即P3(6,2+2),综上,满足题意的P坐标为(6,6)或(6,2+2)或(6,1﹣2).点睛:此题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键.22、(1)x<﹣3或0<x<1;(2);(3)y=﹣2x﹣2.【解析】
(1)不等式的解即为函数y=﹣2x+b的图象在函数y=上方的x的取值范围
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《防火墙技术》课件
- 《中西建筑艺术差异》课件
- 中班文明小观众课件
- 采购部门报告范文模板
- 墙砖地砖施工合同范本
- 财务管理调查报告范文
- 不同企业总结报告范文
- 毕野设计开题报告范文
- 2023年高考真题-语文(天津卷) 含答案
- 《建设之路的探索》课件
- GB/T 12996-2024电动轮椅车
- 介绍鲁滨逊课件
- 彩色喷涂产线项目可行性研究报告写作模板-拿地申报
- 2024年园林绿化建设合同
- 2024-2030年中国吸气剂(消气剂)产业前景预测及发展风险分析报告
- 商务部门消防安全培训课件
- 国企治理实战100问
- 小学五年级上学期科学《心脏和血液》教案
- 媒体创意经济:玩转互联网时代学习通超星期末考试答案章节答案2024年
- 译林版(2024新版)七年级上册英语期中复习:完形填空10空18篇练习题(含答案解析)
- 《七律二首 送瘟神》教案- 2023-2024学年高教版(2023)中职语文职业模块
评论
0/150
提交评论