湖北省孝感市2024届中考数学仿真试卷含解析_第1页
湖北省孝感市2024届中考数学仿真试卷含解析_第2页
湖北省孝感市2024届中考数学仿真试卷含解析_第3页
湖北省孝感市2024届中考数学仿真试卷含解析_第4页
湖北省孝感市2024届中考数学仿真试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省孝感市2024届中考数学仿真试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.下列计算错误的是()A.4x3•2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b22.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.63.已知函数的图象与x轴有交点.则的取值范围是()A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠34.在直角坐标平面内,已知点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,那么r的取值范围为()A. B. C. D.5.一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A. B. C. D.6.已知圆心在原点O,半径为5的⊙O,则点P(-3,4)与⊙O的位置关系是()A.在⊙O内B.在⊙O上C.在⊙O外D.不能确定7.二次函数y=a(x-4)2-4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为(

)A.1

B.-1

C.2

D.-28.计算4×(–9)的结果等于A.32 B.–32 C.36 D.–369.如图,AD是⊙O的弦,过点O作AD的垂线,垂足为点C,交⊙O于点F,过点A作⊙O的切线,交OF的延长线于点E.若CO=1,AD=2,则图中阴影部分的面积为A.4-π B.2-πC.4-π D.2-π10.如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A11B11C11D11E11F11的边长为()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,某景区的两个景点A、B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时、测得景点A的俯角为45°,景点B的俯角为30°,此时C到地面的距离CD为100米,则两景点A、B间的距离为__米(结果保留根号).12.分解因式:x3-9x13.在直角三角形ABC中,∠C=90°,已知sinA=3514.如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为_____.15.已知直角三角形的两边长分别为3、1.则第三边长为________.16.如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为______.三、解答题(共8题,共72分)17.(8分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类记为A;音乐类记为B;球类记为C;其他类记为D.根据调查结果发现该班每个学生都进行了等级且只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:七年级(1)班学生总人数为_______人,扇形统计图中D类所对应扇形的圆心角为_____度,请补全条形统计图;学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.18.(8分)如图,在矩形ABCD中,E是边BC上的点,AE=BC,DF⊥AE,垂足为F,连接DE.求证:AB=DF.19.(8分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:(1)2017年“五•一”期间,该市周边景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.(2)根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?(3)甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.20.(8分)矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长.(2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.21.(8分)如图,数轴上的点A、B、C、D、E表示连续的五个整数,对应数分别为a、b、c、d、e.(1)若a+e=0,则代数式b+c+d=;(2)若a是最小的正整数,先化简,再求值:a+1a-2(3)若a+b+c+d=2,数轴上的点M表示的实数为m(m与a、b、c、d、e不同),且满足MA+MD=3,则m的范围是.22.(10分)如图,矩形ABCD为台球桌面,AD=260cm,AB=130cm,球目前在E点位置,AE=60cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.求BF的长.23.(12分)为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).这次调查中,一共调查了________名学生;请补全两幅统计图;若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.24.已知:如图,△MNQ中,MQ≠NQ.(1)请你以MN为一边,在MN的同侧构造一个与△MNQ全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下面问题:如图,在四边形ABCD中,,∠B=∠D.求证:CD=AB.

参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】

根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)1=a1±1ab+b1.可巧记为:“首平方,末平方,首末两倍中间放”可得答案.【详解】A选项:4x3•1x1=8x5,故原题计算正确;

B选项:a4和a3不是同类项,不能合并,故原题计算错误;

C选项:(-x1)5=-x10,故原题计算正确;

D选项:(a-b)1=a1-1ab+b1,故原题计算正确;

故选:B.【点睛】考查了整式的乘法,关键是掌握整式的乘法各计算法则.2、D【解析】

根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.3、B【解析】试题分析:若此函数与x轴有交点,则,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x轴交点的特点.4、D【解析】

先求出点M到x轴、y轴的距离,再根据直线和圆的位置关系得出即可.【详解】解:∵点M的坐标是(4,3),

∴点M到x轴的距离是3,到y轴的距离是4,

∵点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,

∴r的取值范围是3<r<4,

故选:D.【点睛】本题考查点的坐标和直线与圆的位置关系,能熟记直线与圆的位置关系的内容是解此题的关键.5、D【解析】试题分析:列表如下

白1

白2

(黑,黑)

(白1,黑)

(白2,黑)

白1

(黑,白1)

(白1,白1)

(白2,白1)

白2

(黑,白2)

(白1,白2)

(白2,白2)

由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是.故答案选D.考点:用列表法求概率.6、B.【解析】试题解析:∵OP=5,∴根据点到圆心的距离等于半径,则知点在圆上.故选B.考点:1.点与圆的位置关系;2.坐标与图形性质.7、A【解析】试题分析:根据角抛物线顶点式得到对称轴为直线x=4,利用抛物线对称性得到抛物线在1<x<2这段位于x轴的上方,而抛物线在2<x<3这段位于x轴的下方,于是可得抛物线过点(2,0)然后把(2,0)代入y=a(x-4)2-4(a≠0)可求出a=1.故选A8、D【解析】

根据有理数的乘法法则进行计算即可.【详解】故选:D.【点睛】考查有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.9、B【解析】

由S阴影=S△OAE-S扇形OAF,分别求出S△OAE、S扇形OAF即可;【详解】连接OA,OD

∵OF⊥AD,

∴AC=CD=,

在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,

则∠DOA=120°,OA=2,

∴Rt△OAE中,∠AOE=60°,OA=2

∴AE=2,S阴影=S△OAE-S扇形OAF=×2×2-.故选B.【点睛】考查了切线的判定和性质;能够通过作辅助线将所求的角转移到相应的直角三角形中,是解答此题的关键要证某线是圆的切线,对于切线的判定:已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.10、A【解析】分析:连接OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则△E1OD1为等边三角形,再根据切线的性质得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=×2,同理可得正六边形A3B3C3D3E3F3的边长=()2×2,依此规律可得正六边形A11B11C11D11E11F11的边长=()10×2,然后化简即可.详解:连接OE1,OD1,OD2,如图,∵六边形A1B1C1D1E1F1为正六边形,∴∠E1OD1=60°,∴△E1OD1为等边三角形,∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,∴OD2⊥E1D1,∴OD2=E1D1=×2,∴正六边形A2B2C2D2E2F2的边长=×2,同理可得正六边形A3B3C3D3E3F3的边长=()2×2,则正六边形A11B11C11D11E11F11的边长=()10×2=.故选A.点睛:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.二、填空题(本大题共6个小题,每小题3分,共18分)11、100+100【解析】【分析】由已知可得∠ACD=∠MCA=45°,∠B=∠NCB=30°,继而可得∠DCB=60°,从而可得AD=CD=100米,DB=100米,再根据AB=AD+DB计算即可得.【详解】∵MN//AB,∠MCA=45°,∠NCB=30°,∴∠ACD=∠MCA=45°,∠B=∠NCB=30°,∵CD⊥AB,∴∠CDA=∠CDB=90°,∠DCB=60°,∵CD=100米,∴AD=CD=100米,DB=CD•tan60°=CD=100米,∴AB=AD+DB=100+100(米),故答案为:100+100.【点睛】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,解题的关键是借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.12、x【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式。因此,先提取公因式x后继续应用平方差公式分解即可:x213、35【解析】试题分析:解答此题要利用互余角的三角函数间的关系:sin(90°-α)=cosα,cos(90°-α)=sinα.试题解析:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴cosB=sinA=35考点:互余两角三角函数的关系.14、72°【解析】

首先根据正五边形的性质得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,最后利用三角形的外角的性质得到∠AFE=∠BAC+∠ABE=72°.【详解】∵五边形ABCDE为正五边形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案为72°.【点睛】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键15、4或【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为3的边是斜边时:第三边的长为:;②长为3、3的边都是直角边时:第三边的长为:;∴第三边的长为:或4.考点:3.勾股定理;4.分类思想的应用.16、1【解析】

本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC-60°=∠C-60°,最后根据三角形内角和定理得出关系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到结论.【详解】∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案为:1.【点睛】本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.三、解答题(共8题,共72分)17、48;105°;2【解析】试题分析:根据B的人数和百分比求出总人数,根据D的人数和总人数的得出D所占的百分比,然后得出圆心角的度数,根据总人数求出C的人数,然后补全统计图;记A类学生擅长书法的为A1,擅长绘画的为A2,根据题意画出表格,根据概率的计算法则得出答案.试题解析:(1)12÷25%=48(人)14÷48×360°=105°48-(4+12+14)=18(人),补全图形如下:(2)记A类学生擅长书法的为A1,擅长绘画的为A2,则可列下表:

A1

A1

A2

A2

A1

A1

A2

A2

∴由上表可得:P(考点:统计图、概率的计算.18、详见解析.【解析】

根据矩形性质推出BC=AD=AE,AD∥BC,根据平行线性质推出∠DAE=∠AEB,根据AAS证出△ABE≌△DFA即可.【详解】证明:在矩形ABCD中∵BC=AD,AD∥BC,∠B=90°,

∴∠DAF=∠AEB,

∵DF⊥AE,AE=BC=AD,

∴∠AFD=∠B=90°,

在△ABE和△DFA中

∠AFD=∠B,∠DAF=∠AEB

,AE=AD

∴△ABE≌△DFA(AAS),

∴AB=DF.【点睛】本题考查的知识点有矩形的性质,全等三角形的判定与性质,平行线的性质.解决本题的关键在于能够找到证明三角形全等的有关条件.19、(1)50,108°,补图见解析;(2)9.6;(3).【解析】

(1)根据A景点的人数以及百分表进行计算即可得到该市周边景点共接待游客数;先求得A景点所对应的圆心角的度数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;根据B景点接待游客数补全条形统计图;(2)根据E景点接待游客数所占的百分比,即可估计2018年“五•一”节选择去E景点旅游的人数;(3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.【详解】解:(1)该市周边景点共接待游客数为:15÷30%=50(万人),A景点所对应的圆心角的度数是:30%×360°=108°,B景点接待游客数为:50×24%=12(万人),补全条形统计图如下:(2)∵E景点接待游客数所占的百分比为:×100%=12%,∴2018年“五•一”节选择去E景点旅游的人数约为:80×12%=9.6(万人);(3)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率=.【点睛】本题考查列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.20、(1)①证明见解析;②10;(2)线段EF的长度不变,它的长度为25..【解析】试题分析:(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;根据△OCP与△PDA的面积比为1:4,得出CP=12(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=12PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=12QB,再求出EF=12试题解析:(1)如图1,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP与△PDA的面积比为1:4,∴OPPA=CPDA=14(2)作MQ∥AN,交PB于点Q,如图2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP,∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=12PQ.∵MQ∥AN,∴∠QMF=∠BNF,在△MFQ和△NFB中,∵∠QFM=∠NFB,∠QMF=∠BNF,MQ=BN,∴△MFQ≌△NFB(AAS),∴QF=12QB,∴EF=EQ+QF=12PQ+12QB=12PB,由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴PB=82+42考点:翻折变换(折叠问题);矩形的性质;相似形综合题.21、(1)0;(1)a+2a+1,3【解析】

(1)根据a+e=0,可知a与e互为相反数,则c=0,可得b=-1,d=1,代入可得代数式b+c+d的值;(1)根据题意可得:a=1,将分式计算并代入可得结论即可;(3)先根据A、B、C、D、E为连续整数,即可求出a的值,再根据MA+MD=3,列不等式可得结论.【详解】解:(1)∵a+e=0,即a、e互为相反数,∴点C表示原点,∴b、d也互为相反数,则a+b+c+d+e=0,故答案为:0;(1)∵a是最小的正整数,∴a=1,则原式=÷[+]=÷=•=,当a=1时,原式==;(3)∵A、B、C、D、E为连续整数,∴b=a+1,c=a+1,d=a+3,e=a+4,∵a+b+c+d=1,∴a+a+1+a+1+a+3=1,4a=﹣4,a=﹣1,∵MA+MD=3,∴点M再A、D两点之间,∴﹣1<x<1,故答案为:﹣1<x<1.【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的相关知识点.22、BF的长度是1cm.【解析】

利用“两角法”证得△BEF∽△CDF,利用相似三角形的对应边成比例来求线段CF的长度.【详解】解:如图,在矩形ABCD中:∠DFC=∠EFB,∠EBF=∠FCD=90°,∴△BEF∽△CDF;∴=,又∵AD=BC=260cm,AB=CD=130cm,AE=60cm∴BE=7

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论