版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省揭阳市惠来一中、揭东一中2023-2024学年高考数学全真模拟密押卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用,化简,得.设勾股形中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为()A. B. C. D.2.已知a>0,b>0,a+b=1,若α=,则的最小值是()A.3 B.4 C.5 D.63.已知集合,,则()A. B.C. D.4.已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A.240,18 B.200,20C.240,20 D.200,185.函数的图象大致是()A. B.C. D.6.已知定义在上函数的图象关于原点对称,且,若,则()A.0 B.1 C.673 D.6747.在中,角、、所对的边分别为、、,若,则()A. B. C. D.8.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:及时,如图:记为每个序列中最后一列数之和,则为()A.147 B.294 C.882 D.17649.已知双曲线的一个焦点为,且与双曲线的渐近线相同,则双曲线的标准方程为()A. B. C. D.10.在正项等比数列{an}中,a5-a1=15,a4-a2=6,则a3=()A.2 B.4 C. D.811.已知数列的前项和为,且,,,则的通项公式()A. B. C. D.12.木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.直线xsinα+y+2=0的倾斜角的取值范围是________________.14.已知一组数据,1,0,,的方差为10,则________15.在三棱锥中,,,两两垂直且,点为的外接球上任意一点,则的最大值为______.16.成都市某次高三统考,成绩X经统计分析,近似服从正态分布,且,若该市有人参考,则估计成都市该次统考中成绩大于分的人数为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,,,,和均为边长为的等边三角形.(1)求证:平面平面;(2)求二面角的余弦值.18.(12分)已知函数,.(1)若不等式的解集为,求的值.(2)若当时,,求的取值范围.19.(12分)在中,角的对边分别为,若.(1)求角的大小;(2)若,为外一点,,求四边形面积的最大值.20.(12分)设函数,.(1)解不等式;(2)若对任意的实数恒成立,求的取值范围.21.(12分)已知函数(1)当时,求不等式的解集;(2)的图象与两坐标轴的交点分别为,若三角形的面积大于,求参数的取值范围.22.(10分)已知等差数列an,和等比数列b(I)求数列{an}(II)求数列n2an⋅a
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析:设三角形的直角边分别为1,,利用几何概型得出图钉落在小正方形内的概率即可得出结论.解析:设三角形的直角边分别为1,,则弦为2,故而大正方形的面积为4,小正方形的面积为.图钉落在黄色图形内的概率为.落在黄色图形内的图钉数大约为.故选:A.点睛:应用几何概型求概率的方法建立相应的几何概型,将试验构成的总区域和所求事件构成的区域转化为几何图形,并加以度量.(1)一般地,一个连续变量可建立与长度有关的几何概型,只需把这个变量放在数轴上即可;(2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与面积有关的几何概型;(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系即可建立与体积有关的几何概型.2、C【解析】
根据题意,将a、b代入,利用基本不等式求出最小值即可.【详解】∵a>0,b>0,a+b=1,∴,当且仅当时取“=”号.
答案:C【点睛】本题考查基本不等式的应用,“1”的应用,利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是首先要判断参数是否为正;二定是其次要看和或积是否为定值(和定积最大,积定和最小);三相等是最后一定要验证等号能否成立,属于基础题.3、C【解析】
求出集合,计算出和,即可得出结论.【详解】,,,.故选:C.【点睛】本题考查交集和并集的计算,考查计算能力,属于基础题.4、A【解析】
利用统计图结合分层抽样性质能求出样本容量,利用条形图能求出抽取的户主对四居室满意的人数.【详解】样本容量为:(150+250+400)×30%=240,∴抽取的户主对四居室满意的人数为:故选A.【点睛】本题考查样本容量和抽取的户主对四居室满意的人数的求法,是基础题,解题时要认真审题,注意统计图的性质的合理运用.5、A【解析】
根据复合函数的单调性,同增异减以及采用排除法,可得结果.【详解】当时,,由在递增,所以在递增又是增函数,所以在递增,故排除B、C当时,若,则所以在递减,而是增函数所以在递减,所以A正确,D错误故选:A【点睛】本题考查具体函数的大致图象的判断,关键在于对复合函数单调性的理解,记住常用的结论:增+增=增,增-减=增,减+减=减,复合函数单调性同增异减,属中档题.6、B【解析】
由题知为奇函数,且可得函数的周期为3,分别求出知函数在一个周期内的和是0,利用函数周期性对所求式子进行化简可得.【详解】因为为奇函数,故;因为,故,可知函数的周期为3;在中,令,故,故函数在一个周期内的函数值和为0,故.故选:B.【点睛】本题考查函数奇偶性与周期性综合问题.其解题思路:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.7、D【解析】
利用余弦定理角化边整理可得结果.【详解】由余弦定理得:,整理可得:,.故选:.【点睛】本题考查余弦定理边角互化的应用,属于基础题.8、A【解析】
根据题目所给的步骤进行计算,由此求得的值.【详解】依题意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故选:A【点睛】本小题主要考查合情推理,考查中国古代数学文化,属于基础题.9、B【解析】
根据焦点所在坐标轴和渐近线方程设出双曲线的标准方程,结合焦点坐标求解.【详解】∵双曲线与的渐近线相同,且焦点在轴上,∴可设双曲线的方程为,一个焦点为,∴,∴,故的标准方程为.故选:B【点睛】此题考查根据双曲线的渐近线和焦点求解双曲线的标准方程,易错点在于漏掉考虑焦点所在坐标轴导致方程形式出错.10、B【解析】
根据题意得到,,解得答案.【详解】,,解得或(舍去).故.故选:.【点睛】本题考查了等比数列的计算,意在考查学生的计算能力.11、C【解析】
利用证得数列为常数列,并由此求得的通项公式.【详解】由,得,可得().相减得,则(),又由,,得,所以,所以为常数列,所以,故.故选:C【点睛】本小题考查数列的通项与前项和的关系等基础知识;考查运算求解能力,逻辑推理能力,应用意识.12、C【解析】
由三视图知几何体是一个从圆锥中截出来的锥体,圆锥底面半径为,圆锥的高,截去的底面劣弧的圆心角为,底面剩余部分的面积为,利用锥体的体积公式即可求得.【详解】由已知中的三视图知圆锥底面半径为,圆锥的高,圆锥母线,截去的底面弧的圆心角为120°,底面剩余部分的面积为,故几何体的体积为:.故选C.【点睛】本题考查了三视图还原几何体及体积求解问题,考查了学生空间想象,数学运算能力,难度一般.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】因为sinα∈[-1,1],所以-sinα∈[-1,1],所以已知直线的斜率范围为[-1,1],由倾斜角与斜率关系得倾斜角范围是.答案:14、7或【解析】
依据方差公式列出方程,解出即可.【详解】,1,0,,的平均数为,所以解得或.【点睛】本题主要考查方差公式的应用.15、【解析】
先根据三棱锥的几何性质,求出外接球的半径,结合向量的运算,将问题转化为求球体表面一点到外心距离最大的问题,即可求得结果.【详解】因为两两垂直且,故三棱锥的外接球就是对应棱长为2的正方体的外接球.且外接球的球心为正方体的体对角线的中点,如下图所示:容易知外接球半径为.设线段的中点为,故可得,故当取得最大值时,取得最大值.而当在同一个大圆上,且,点与线段在球心的异侧时,取得最大值,如图所示:此时,故答案为:.【点睛】本题考查球体的几何性质,几何体的外接球问题,涉及向量的线性运算以及数量积运算,属综合性困难题.16、.【解析】
根据正态分布密度曲线性质,结合求得,即可得解.【详解】根据正态分布,且,所以故该市有人参考,则估计成都市该次统考中成绩大于分的人数为.故答案为:.【点睛】此题考查正态分布密度曲线性质的理解辨析,根据曲线的对称性求解概率,根据总人数求解成绩大于114的人数.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)【解析】
(1)取的中点,连接,要证平面平面,转证平面,即证,即可;(2)以为坐标原点,以为轴正方向,建立如图所示的空间直角坐标系,分别求出平面与平面的法向量,代入公式,即可得到结果.【详解】(1)取的中点,连接,因为均为边长为的等边三角形,所以,,且因为,所以,所以,又因为,平面,平面,所以平面.又因为平面,所以平面平面.(2)因为,为等边三角形,所以,又因为,所以,,在中,由正弦定理,得:,所以.以为坐标原点,以为轴正方向,建立如图所示的空间直角坐标系,则,,,,,设平面的法向量为,则,即,令,则平面的一个法向量为,依题意,平面的一个法向量所以故二面角的余弦值为.【点睛】空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.18、(1);(2)【解析】试题分析:(1)求得的解集,根据集合相等,列出方程组,即可求解的值;(2)①当时,恒成立,②当时,转化为,设,求得函数的最小值,即可求解的取值范围.试题解析:(1)由,得,因为不等式的解集为,所以,故不等式可化为,解得,所以,解得.(2)①当时,恒成立,所以.②当时,可化为,设,则,所以当时,,所以.综上,的取值范围是.19、(1)(2)【解析】
(1)根据正弦定理化简等式可得,即;(2)根据题意,利用余弦定理可得,再表示出,表示出四边形,进而可得最值.【详解】(1),由正弦定理得:在中,,则,即,,即.(2)在中,又,则为等边三角形,又,-当时,四边形的面积取最大值,最大值为.【点睛】本题主要考查了正弦定理,余弦定理,三角形面积公式的应用,属于基础题.20、(1);(2)【解析】试题分析:(1)将绝对值不等式两边平方,化为二次不等式求解.(2)将问题化为分段函数问题,通过分类讨论并根据恒成立问题的解法求解即可.试题解析:整理得解得①②解得③,且无限趋近于4,综上的取值范围是21、(1)(2)【解析】
(1)当时,不等式可化为:,再利用绝对值的意义,分,,讨论求解.(2)根据可得,得到函数的图象与两坐标轴的交点坐标分别为,再利用三角形面积公式由求解.【详解】(1)当时,不等式可化为:①当时,不等式化为,解得:②当时,不等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年修订:机器设备抵押合同范本3篇
- 银行员工年度个人工作总结
- 2024年购置住宅合同:商品房买卖具体规定2篇
- 计算机软件项目开发与实施合同
- 设备回购协议格式
- 设计软件著作权测试版
- 语文味如何融入课堂
- 质保书品质住宅
- 购买回收服务合同
- 购物安全天猫商家保证
- 工伤职工医疗费报销单
- 中国故事英文版哪吒英文二篇
- 细胞核的结构与功能说课课件 高一上学期生物人教版(2019)必修1
- MT 559-1996煤矿用带式输送机橡胶缓冲托辊安全性能检验规范
- GB/T 19589-2004纳米氧化锌
- 激发正能量共筑青春梦课件- 高中主题班会
- 幼儿规则意识培养《有趣的常规》课件
- 六朝志怪小说课件
- 2023江苏省高中学业水平合格性考试英语模拟试卷(含答案详解1)
- 部编版语文四年级上册书面分层作业设计案例25《王戎不取道旁李》(含答案)
- 2022年版义务教育劳动课程标准解读
评论
0/150
提交评论