新课标人教版临沭县石门中学八级上册月考数学试卷含解析_第1页
新课标人教版临沭县石门中学八级上册月考数学试卷含解析_第2页
新课标人教版临沭县石门中学八级上册月考数学试卷含解析_第3页
新课标人教版临沭县石门中学八级上册月考数学试卷含解析_第4页
新课标人教版临沭县石门中学八级上册月考数学试卷含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2014-2015学年山东省临沂市临沭县石门中学八年级(上)月考数学试卷(10月份)一、选择题1.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm2.下面四个图形中,能判断∠1>∠2的是()A. B. C. D.3.下列选项中,不能确定△ABC是直角三角形的是()A.∠A+∠B=90° B.∠A=∠∠C C.∠A﹣∠B=∠C D.∠A﹣∠B=90°4.如图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DFE()A.BC=EF B.∠A=∠D C.AC∥DF D.AC=DF5.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A.90° B.135° C.270° D.315°6.要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.HL7.若一个多边形的内角和与外角和相等,则这个多边形是()A.三角形 B.六边形 C.五边形 D.四边形8.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个 B.3个 C.2个 D.1个9.AD是△ABC的角平分线且交BC于D,过点D作DE⊥AB于E,DF⊥AC于F,则下列结论不一定正确的是()A.DE=DF B.BD=CD C.AE=AF D.∠ADE=∠ADF10.在等腰三角形ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为()A.7 B.7或11 C.11 D.7或1011.如图,直线l1、l2、l3分别表示三条相互交叉的公路,现要建立一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有()A.一处 B.二处 C.三处 D.四处12.如图,∠1=∠2,∠3=∠4,则图中全等的三角形的对数是()A.3 B.4 C.5 D.613.如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是()A.6cm B.4cm C.10cm D.以上都不对二、填空题14.如图△ABC中,AD是BC上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是.15.如图,从A处观测C处仰角∠CAD=30°,从B处观测C处的仰角∠CBD=45°,从C外观测A、B两处时视角∠ACB=度.16.如图,已知∠CAB=∠DBA,要使△ABD≌△BAC,只要添加一个条件是.(只要填一个你认为适合的条件,不添加其它的字母和辅助线)17.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是.18.如果将长度为a﹣2,a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,那么a的取值范围是.19.如图,△ABC中,∠A=100°,BI、CI分别平分∠ABC,∠ACB,则∠BIC=,若BM、CM分别平分∠ABC,∠ACB的外角平分线,则∠M=.20.如图,△ABC的三边AB、BC、CA的长分别是20、30、40、其中三条角平分线交于点0,则S△ABO:S△BCO:S△CAO等于.三、解答题:21.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°.(1)求∠DAE的度数;(2)试写出∠DAE与∠C﹣∠B有何关系?(不必证明)22.如图所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,AB=CD.求证:EG=FG.23.如图,点D、B分别在∠A的两边上,C是∠A内一点,且AB=AD,BC=DC,CE⊥AD,CF⊥AB,垂足分别为E、F.求证:CE=CF.24.如图1,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,(1)△BCE≌△CAD的依据是(填字母);(2)猜想:AD、DE、BE的数量关系为(不需证明);(3)当BE绕点B、AD绕点A旋转到图2位置时,线段AD、DE、BE之间又有怎样的数量关系,并证明你的结论.2014-2015学年山东省临沂市临沭县石门中学八年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题1.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm考点:三角形三边关系.分析:此题首先根据三角形的三边关系,求得第三边的取值范围,再进一步找到符合条件的数值.解答:解:根据三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9﹣4=5,9+4=13.∴第三边取值范围应该为:5<第三边长度<13,故只有B选项符合条件.故选:B.点评:本题考查了三角形三边关系,一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.2.下面四个图形中,能判断∠1>∠2的是()A. B. C. D.考点:三角形的外角性质.分析:根据图象,利用排除法求解.解答:解:A、∠1与∠2是对顶角,相等,故本选项错误;B、根据图象,∠1<∠2,故本选项错误;C、∠1是锐角,∠2是直角,∠1<∠2,故本选项错误;D、∠1是三角形的一个外角,所以∠1>∠2,故本选项正确.故选D.点评:本题主要考查学生识图能力和三角形的外角性质.3.下列选项中,不能确定△ABC是直角三角形的是()A.∠A+∠B=90° B.∠A=∠∠C C.∠A﹣∠B=∠C D.∠A﹣∠B=90°考点:三角形内角和定理.分析:根据三角形内角和定理得出∠A+∠B+∠C=180°,和选项求出∠C(或∠B或∠A)的度数,再判断即可.解答:解:A、∵∠A+∠B=90°,∴∠C=180°﹣(∠A+∠B)=90°,即△ABC是直角三角形,故本选项错误;B、∵∠A=μ∠C,∠A+∠B+∠C=180°,∴∠∠C+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故本选项错误;C、∵∠A﹣∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,∴△ABC是直角三角形,故本选项错误;D、∵∠A﹣∠B=90°和∠A+∠B+∠C=180°不能推出△ABC的一个内角是90°,∴不能得出△ABC是直角三角形,故本选项正确;故选D.点评:本题考查了三角形的内角和定理的应用,主要考查学生的推理能力和辨析能力.4.如图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DFE()A.BC=EF B.∠A=∠D C.AC∥DF D.AC=DF考点:全等三角形的判定.分析:要使△ABC≌△DEF,已知AB=ED,BE=CF,具备了两条边对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可.解答:解:可添加AC=DF,或AB∥DE或∠B=∠DEF,证明添加AC=DF后成立,∵BE=CF,∴BC=EF,又AB=DE,AC=DF,∴△ABC≌△DEF.故选D.点评:本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.5.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A.90° B.135° C.270° D.315°考点:多边形内角与外角;三角形内角和定理.分析:先根据直角三角形的性质求得两个锐角和是90度,再根据四边形的内角和是360度,即可求得∠1+∠2的值.解答:解:∵∠C=90°,∴∠A+∠B=90°.∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣90°=270°.故选:C.点评:本题考查了直角三角形的性质和四边形的内角和定理.知道剪去直角三角形的这个直角后得到一个四边形,根据四边形的内角和定理求解是解题的关键.6.要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.HL考点:全等三角形的应用.分析:结合图形根据三角形全等的判定方法解答.解答:解:∵AB⊥BF,DE⊥BF,∴∠ABC=∠EDC=90°,在△EDC和△ABC中,,∴△EDC≌△ABC(ASA).故选B.点评:本题考查了全等三角形的应用,熟练掌握全等三角形的判定方法是解题的关键.7.若一个多边形的内角和与外角和相等,则这个多边形是()A.三角形 B.六边形 C.五边形 D.四边形考点:多边形内角与外角.专题:应用题.分析:根据多边形的内角和公式(n﹣2)•180°与多边形的外角和定理列式进行计算即可得解.解答:解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.所以这个多边形是四边形.故选D.点评:本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.8.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个 B.3个 C.2个 D.1个考点:全等三角形的判定.分析:∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或已知角的另一边.解答:解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.其中能使△ABC≌△AED的条件有:①③④故选:B.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.做题时要根据已知条件在图形上的位置,结合判定方法,进行添加.9.AD是△ABC的角平分线且交BC于D,过点D作DE⊥AB于E,DF⊥AC于F,则下列结论不一定正确的是()A.DE=DF B.BD=CD C.AE=AF D.∠ADE=∠ADF考点:角平分线的性质.分析:根据角平分线的性质,可证△AFD≌△AED,找到图中相等的关系即可.解答:解:∵AD是∠BAC的平分线,∴DE=DF,DE⊥AB,DF⊥AC,∴△AFD≌△AED(HL),∴DE=DF,AE=AF,∠ADE=∠ADF.故选B.点评:本题主要考查角平分线的性质,由已知能够注意到△AFD≌△AED,是解决的关键.10.在等腰三角形ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为()A.7 B.7或11 C.11 D.7或10考点:等腰三角形的性质.专题:计算题.分析:因为已知条件给出的15或12两个部分,哪一部分是腰长与腰长一半的和不明确,所以分两种情况讨论.解答:解:根据题意,①当15是腰长与腰长一半时,即AC+AC=15,解得AC=10,所以底边长=12﹣×10=7;②当12是腰长与腰长一半时,AC+AC=12,解得AC=8,所以底边长=15﹣×8=11.所以底边长等于7或11.故选B.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确给出哪一部分长要一定要想到两种情况,此题要采用分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.这也是学生容易忽视的地方,应注意向学生特别强调.11.如图,直线l1、l2、l3分别表示三条相互交叉的公路,现要建立一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有()A.一处 B.二处 C.三处 D.四处考点:角平分线的性质.专题:应用题.分析:根据角平分线上的点到角的两边的距离相等,分点P在三条公路相交的三角形地带和地带之外作出图形即可得解.解答:解:如图,可选择的地址有四处.故选D.点评:本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.12.如图,∠1=∠2,∠3=∠4,则图中全等的三角形的对数是()A.3 B.4 C.5 D.6考点:全等三角形的判定.分析:根据全等三角形的判定定理来解答.解答:解:①在△ABD与△CBD中,,则△ABD≌△CBD(ASA);②由△ABD≌△CBD得到AB=CB.则在△ABE与△CBE中,,所以△ABE≌△CBE(SAS);③由△ABD≌△CBD得到AB=CB.则在△ABF与△CBF中,,所以△ABF≌△CBF(SAS);④由△ABE≌△CBE得到AE=CE.由△ABF≌△CBF得到AF=CF,则在△AEF与△CEF中,,所以△AEF≌△CEF(SSS);⑤由△ABD≌△CBD得到AD=CD,则在△AED与△CED中,,所以△AED≌△CED(SAS);⑥在△ADF与△CDF中,,则△ADF≌△CDF(SAS).综上所述,图中的全等三角形有6对.故选:D.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是()A.6cm B.4cm C.10cm D.以上都不对考点:角平分线的性质;等腰直角三角形.专题:计算题.分析:由∠C=90°,根据垂直定义得到DC与AC垂直,又AD平分∠CAB交BC于D,DE⊥AB,利用角平分线定理得到DC=DE,再利用HL证明三角形ACD与三角形AED全等,根据全等三角形的对应边相等可得AC=AE,又AC=BC,可得BC=AE,然后由三角形BED的三边之和表示出三角形的周长,将其中的DE换为DC,由CD+DB=BC进行变形,再将BC换为AE,由AE+EB=AB,可得出三角形BDE的周长等于AB的长,由AB的长可得出周长.解答:解:∵∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.故选A.点评:此题考查了角平分线定理,垂直的定义,直角三角形证明全等的方法﹣HL,利用了转化及等量代换的思想,熟练掌握角平分线定理是解本题的关键.二、填空题14.如图△ABC中,AD是BC上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是6.考点:三角形的面积.专题:计算题.分析:根据三角形的中线把三角形分成面积相等的两部分,求出面积比,即可解答.解答:解:∵AD是BC上的中线,∴S△ABD=S△ACD=S△ABC,∵BE是△ABD中AD边上的中线,∴S△ABE=S△BED=S△ABD,∴S△ABE=S△ABC,∵△ABC的面积是24,∴S△ABE=×24=6.故答案为:6.点评:本题主要考查了三角形面积的求法,掌握三角形的中线将三角形分成面积相等的两部分,是解答本题的关键.15.如图,从A处观测C处仰角∠CAD=30°,从B处观测C处的仰角∠CBD=45°,从C外观测A、B两处时视角∠ACB=15度.考点:三角形的外角性质.分析:因为∠CBD是△ABC的外角,所以∠CBD=∠CAD+∠ACB,则∠ACB=∠CBD﹣∠ACB.解答:解:方法1:∵∠CBD是△ABC的外角,∴∠CBD=∠CAD+∠ACB,∴∠ACB=∠CBD﹣∠ACB=45°﹣30°=15°.方法2:由邻补角的定义可得∠CBA=180°﹣∠CBD=180°﹣45°=135°.∵∠CAD=30°,∠CBA=135°,∴∠ACB=180°﹣∠CAD﹣∠CBA=180°﹣30°﹣135°=180°﹣165°=15°.点评:本题考查的是三角形外角与内角的关系,即三角形的外角等于与它不相邻的两个内角的和.16.如图,已知∠CAB=∠DBA,要使△ABD≌△BAC,只要添加一个条件是BD=AC.(只要填一个你认为适合的条件,不添加其它的字母和辅助线)考点:全等三角形的判定.专题:开放型.分析:要证明△ABD≌△BAC,已知∠CAB=∠DBA,且AB=BA;所以再添加BD=AC或一组对应角相等,即可运用SAS或AAS、ASA来判定两三角形全等.解答:解:∵∠CAB=∠DBA,AB=BA,BD=AC,∴△ABD≌△BAC(SAS).故答案为:BD=AC.点评:本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.17.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.考点:三角形的稳定性.分析:三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.解答:解:这样做的道理是利用三角形的稳定性.点评:本题考查三角形稳定性的实际应用,三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.18.如果将长度为a﹣2,a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,那么a的取值范围是a>5.考点:三角形三边关系.分析:先判断三边的大小,再根据三角形的三边关系:较小两边之和大于第三边,列不等式求解.解答:解:因为﹣2<2<5,所以a﹣2<a+2<a+5,所以由三角形三边关系可得a﹣2+a+2>a+5,解得:a>5.则不等式的解集是:a>5.故答案为:a>5.点评:此题主要考查了三角形三边关系,此题关键一要注意三角形的三边关系,二要熟练解不等式.19.如图,△ABC中,∠A=100°,BI、CI分别平分∠ABC,∠ACB,则∠BIC=140°,若BM、CM分别平分∠ABC,∠ACB的外角平分线,则∠M=40°.考点:三角形内角和定理;三角形的外角性质.分析:首先根据三角形内角和求出∠ABC+∠ACB的度数,再根据角平分线的性质得到∠IBC=∠ABC,∠ICB=∠ACB,求出∠IBC+∠ICB的度数,再次根据三角形内角和求出∠I的度数即可;根据∠ABC+∠ACB的度数,算出∠DBC+∠ECB的度数,然后再利用角平分线的性质得到∠1=∠DBC,∠2=ECB,可得到∠1+∠2的度数,最后再利用三角形内角和定理计算出∠M的度数.解答:解:∵∠A=100°,∵∠ABC+∠ACB=180°﹣100°=80°,∵BI、CI分别平分∠ABC,∠ACB,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠IBC+∠ICB=∠ABC+∠ACB=(∠ABC+∠ACB)=×80°=40°,∴∠I=180°﹣(∠IBC+∠ICB)=180°﹣40°=140°;∵∠ABC+∠ACB=80°,∴∠DBC+∠ECB=180°﹣∠ABC+180°﹣∠ACB=360°﹣(∠ABC+∠ACB)=360°﹣80°=280°,∵BM、CM分别平分∠ABC,∠ACB的外角平分线,∴∠1=∠DBC,∠2=ECB,∴∠1+∠2=×280°=140°,∴∠M=180°﹣∠1﹣∠2=40°.故答案为:140°;40°.点评:此题主要考查了三角形内角和定理,以及角平分线的性质,关键是根据三角形内角和定理计算出∠ABC+∠ACB的度数.20.如图,△ABC的三边AB、BC、CA的长分别是20、30、40、其中三条角平分线交于点0,则S△ABO:S△BCO:S△CAO等于2:3:4.考点:角平分线的性质.分析:过O分别作OE⊥CB,FO⊥AB,OD⊥AC,根据角平分线的性质可得EO=DO=FO,再根据三角形的面积公式可得S△ABO:S△BCO:S△CAO=20:30:40=2:3:4.解答:解:过O分别作OE⊥CB,FO⊥AB,OD⊥AC,∵BO是∠ABC平分线,∴EO=FO,∵CO是∠ACB平分线,∴EO=DO,∴EO=DO=FO,∵S△ABO=AB•FO,S△BCO=CB•EO,S△CAO=AC•DO,∴S△ABO:S△BCO:S△CAO=20:30:40=2:3:4.故答案为:2:3:4.点评:此题主要考查了角平分线的性质,关键是掌握角平分线上的点到角两边的距离相等.三、解答题:21.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°.(1)求∠DAE的度数;(2)试写出∠DAE与∠C﹣∠B有何关系?(不必证明)考点:三角形内角和定理.专题:探究型.分析:(1)由三角形内角和定理可求得∠BAC=100°,由角平分线的性质知∠BAE=50°,在Rt△ABD中,可得∠BAD=60°,故∠DAE=∠BAD﹣∠BAE;(2)由(1)可知∠C﹣∠B=2∠DAE.解答:解:(1)∵∠B=30°,∠C=50°,∴∠BAC=180°﹣30°﹣50°=100°.∵AE是∠BAC的平分线,∴∠BAE=50°.在Rt△ABD中,∠BAD=90°﹣∠B=60°,∴∠DAE=∠BAD﹣∠BAE=60°﹣50=10°;(2)∠C﹣∠B=2∠DAE.点评:本题利用了三角形内角和定理、角的平分线的性质、直角三角形的性质求解.22.如图所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,AB=CD.求证:EG=FG.考点:全等三角形的判定与性质.专题:证明题.分析:根据题干给出的条件可以证明△ABF≌△CDE,可得:DE=BF,再根据DE⊥AC,BF⊥AC,∠EGD=∠FGB,可以证明△DEG≌△BFG,可以证明EG=FG.解答:解:∵AE=CF,AF=AE+EF.CE=CF+FE,∴AF=CE,在RT△ABF和RT△CDE中,,∴RT△ABF≌RT△CDE(HL),∴DE=BF;∵DE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论