版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省漳平一中2023-2024学年高三第三次测评数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量,(其中为实数),则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知函数.下列命题:①函数的图象关于原点对称;②函数是周期函数;③当时,函数取最大值;④函数的图象与函数的图象没有公共点,其中正确命题的序号是()A.①④ B.②③ C.①③④ D.①②④3.设,则A. B. C. D.4.下列不等式正确的是()A. B.C. D.5.盒中有6个小球,其中4个白球,2个黑球,从中任取个球,在取出的球中,黑球放回,白球则涂黑后放回,此时盒中黑球的个数,则()A., B.,C., D.,6.如图示,三棱锥的底面是等腰直角三角形,,且,,则与面所成角的正弦值等于()A. B. C. D.7.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为,大圆柱底面半径为,如图1放置容器时,液面以上空余部分的高为,如图2放置容器时,液面以上空余部分的高为,则()A. B. C. D.8.已知集合A={x|–1<x<2},B={x|x>1},则A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)9.过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MN⊥l,则M到直线NF的距离为()A. B. C. D.10.在中,内角所对的边分别为,若依次成等差数列,则()A.依次成等差数列 B.依次成等差数列C.依次成等差数列 D.依次成等差数列11.将函数的图象向右平移个周期后,所得图象关于轴对称,则的最小正值是()A. B. C. D.12.抛物线的准线方程是,则实数()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数,其中且,则______________.14.在中,角,,的对边长分别为,,,满足,,则的面积为__.15.已知抛物线的焦点和椭圆的右焦点重合,直线过抛物线的焦点与抛物线交于、两点和椭圆交于、两点,为抛物线准线上一动点,满足,,当面积最大时,直线的方程为______.16.的展开式中的系数为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知分别是的内角的对边,且.(Ⅰ)求.(Ⅱ)若,,求的面积.(Ⅲ)在(Ⅱ)的条件下,求的值.18.(12分)在平面直角坐标系中,已知抛物线C:()的焦点F在直线上,平行于x轴的两条直线,分别交抛物线C于A,B两点,交该抛物线的准线于D,E两点.(1)求抛物线C的方程;(2)若F在线段上,P是的中点,证明:.19.(12分)如图,在平面直角坐标系中,已知圆C:,椭圆E:()的右顶点A在圆C上,右准线与圆C相切.(1)求椭圆E的方程;(2)设过点A的直线l与圆C相交于另一点M,与椭圆E相交于另一点N.当时,求直线l的方程.20.(12分)已知函数,其中.(Ⅰ)若,求函数的单调区间;(Ⅱ)设.若在上恒成立,求实数的最大值.21.(12分)如图,在四棱锥中,四边形为正方形,平面,点是棱的中点,,.(1)若,证明:平面平面;(2)若三棱锥的体积为,求二面角的余弦值.22.(10分)已知函数.(1)当时,判断在上的单调性并加以证明;(2)若,,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
结合向量垂直的坐标表示,将两个条件相互推导,根据能否推导的情况判断出充分、必要条件.【详解】由,则,所以;而当,则,解得或.所以“”是“”的充分不必要条件.故选:A【点睛】本小题考查平面向量的运算,向量垂直,充要条件等基础知识;考查运算求解能力,推理论证能力,应用意识.2、A【解析】
根据奇偶性的定义可判断出①正确;由周期函数特点知②错误;函数定义域为,最值点即为极值点,由知③错误;令,在和两种情况下知均无零点,知④正确.【详解】由题意得:定义域为,,为奇函数,图象关于原点对称,①正确;为周期函数,不是周期函数,不是周期函数,②错误;,,不是最值,③错误;令,当时,,,,此时与无交点;当时,,,,此时与无交点;综上所述:与无交点,④正确.故选:.【点睛】本题考查函数与导数知识的综合应用,涉及到函数奇偶性和周期性的判断、函数最值的判断、两函数交点个数问题的求解;本题综合性较强,对于学生的分析和推理能力有较高要求.3、C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.4、D【解析】
根据,利用排除法,即可求解.【详解】由,可排除A、B、C选项,又由,所以.故选D.【点睛】本题主要考查了三角函数的图象与性质,以及对数的比较大小问题,其中解答熟记三角函数与对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.5、C【解析】
根据古典概型概率计算公式,计算出概率并求得数学期望,由此判断出正确选项.【详解】表示取出的为一个白球,所以.表示取出一个黑球,,所以.表示取出两个球,其中一黑一白,,表示取出两个球为黑球,,表示取出两个球为白球,,所以.所以,.故选:C【点睛】本小题主要考查离散型随机变量分布列和数学期望的计算,属于中档题.6、A【解析】
首先找出与面所成角,根据所成角所在三角形利用余弦定理求出所成角的余弦值,再根据同角三角函数关系求出所成角的正弦值.【详解】由题知是等腰直角三角形且,是等边三角形,设中点为,连接,,可知,,同时易知,,所以面,故即为与面所成角,有,故.故选:A.【点睛】本题主要考查了空间几何题中线面夹角的计算,属于基础题.7、B【解析】
根据空余部分体积相等列出等式即可求解.【详解】在图1中,液面以上空余部分的体积为;在图2中,液面以上空余部分的体积为.因为,所以.故选:B【点睛】本题考查圆柱的体积,属于基础题.8、C【解析】
根据并集的求法直接求出结果.【详解】∵,∴,故选C.【点睛】考查并集的求法,属于基础题.9、C【解析】
联立方程解得M(3,),根据MN⊥l得|MN|=|MF|=4,得到△MNF是边长为4的等边三角形,计算距离得到答案.【详解】依题意得F(1,0),则直线FM的方程是y=(x-1).由得x=或x=3.由M在x轴的上方得M(3,),由MN⊥l得|MN|=|MF|=3+1=4又∠NMF等于直线FM的倾斜角,即∠NMF=60°,因此△MNF是边长为4的等边三角形点M到直线NF的距离为故选:C.【点睛】本题考查了直线和抛物线的位置关系,意在考查学生的计算能力和转化能力.10、C【解析】
由等差数列的性质、同角三角函数的关系以及两角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,从而可得结果.【详解】依次成等差数列,,正弦定理得,由余弦定理得,,即依次成等差数列,故选C.【点睛】本题主要考查等差数列的定义、正弦定理、余弦定理,属于难题.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.11、D【解析】
由函数的图象平移变换公式求出变换后的函数解析式,再利用诱导公式得到关于的方程,对赋值即可求解.【详解】由题意知,函数的最小正周期为,即,由函数的图象平移变换公式可得,将函数的图象向右平移个周期后的解析式为,因为函数的图象关于轴对称,所以,即,所以当时,有最小正值为.故选:D【点睛】本题考查函数的图象平移变换公式和三角函数诱导公式及正余弦函数的性质;熟练掌握诱导公式和正余弦函数的性质是求解本题的关键;属于中档题、常考题型.12、C【解析】
根据准线的方程写出抛物线的标准方程,再对照系数求解即可.【详解】因为准线方程为,所以抛物线方程为,所以,即.故选:C【点睛】本题考查抛物线与准线的方程.属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先化简函数的解析式,在求出,从而求得的值.【详解】由题意,函数可化简为,所以,所以.故答案为:0.【点睛】本题主要考查了二项式定理的应用,以及导数的运算和函数值的求解,其中解答中正确化简函数的解析式,准确求解导数是解答的关键,着重考查了推理与运算能力.14、.【解析】
由二次方程有解的条件,结合辅助角公式和正弦函数的值域可求,进而可求,然后结合余弦定理可求,代入,计算可得所求.【详解】解:把看成关于的二次方程,则,即,即为,化为,而,则,由于,可得,可得,即,代入方程可得,,,由余弦定理可得,,解得:(负的舍去),.故答案为.【点睛】本题主要考查一元二次方程的根的存在条件及辅助角公式及余弦定理和三角形的面积公式的应用,属于中档题.15、【解析】
根据均值不等式得到,,根据等号成立条件得到直线的倾斜角为,计算得到直线方程.【详解】由椭圆,可知,,,,,,,(当且仅当,等号成立),,,,,直线的倾斜角为,直线的方程为.故答案为:.【点睛】本题考查了抛物线,椭圆,直线的综合应用,意在考查学生的计算能力和综合应用能力.16、28【解析】
将已知式转化为,则的展开式中的系数中的系数,根据二项式展开式可求得其值.【详解】,所以的展开式中的系数就是中的系数,而中的系数为,展开式中的系数为故答案为:28.【点睛】本题考查二项式展开式中的某特定项的系数,关键在于将原表达式化简将三项的幂的形式转化为可求的二项式的形式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ);(Ⅲ).【解析】
(Ⅰ)由已知结合正弦定理先进行代换,然后结合和差角公式及正弦定理可求;(Ⅱ)由余弦定理可求,然后结合三角形的面积公式可求;(Ⅲ)结合二倍角公式及和角余弦公式即可求解.【详解】(Ⅰ)因为,所以,所以,由正弦定理可得,;(Ⅱ)由余弦定理可得,,整理可得,,解可得,,因为,所以;(Ⅲ)由于,.所以.【点睛】本题主要考查了正弦定理、余弦定理、和角余弦公式,二倍角公式及三角形的面积公式的综合应用,意在考查学生对这些知识的理解掌握水平.18、(1);(2)见解析【解析】
(1)根据抛物线的焦点在直线上,可求得的值,从而求得抛物线的方程;(2)法一:设直线,的方程分别为和且,,,可得,,,的坐标,进而可得直线的方程,根据在直线上,可得,再分别求得,,即可得证;法二:设,,则,根据直线的斜率不为0,设出直线的方程为,联立直线和抛物线的方程,结合韦达定理,分别求出,,化简,即可得证.【详解】(1)抛物线C的焦点坐标为,且该点在直线上,所以,解得,故所求抛物线C的方程为(2)法一:由点F在线段上,可设直线,的方程分别为和且,,,则,,,.∴直线的方程为,即.又点在线段上,∴.∵P是的中点,∴∴,.由于,不重合,所以法二:设,,则当直线的斜率为0时,不符合题意,故可设直线的方程为联立直线和抛物线的方程,得又,为该方程两根,所以,,,.,由于,不重合,所以【点睛】本题考查抛物线的标准方程,考查抛物线的定义,考查直线与抛物线的位置关系,属于中档题.19、(1)(2)或.【解析】
(1)圆的方程已知,根据条件列出方程组,解方程即得;(2)设,,显然直线l的斜率存在,方法一:设直线l的方程为:,将直线方程和椭圆方程联立,消去,可得,同理直线方程和圆方程联立,可得,再由可解得,即得;方法二:设直线l的方程为:,与椭圆方程联立,可得,将其与圆方程联立,可得,由可解得,即得.【详解】(1)记椭圆E的焦距为().右顶点在圆C上,右准线与圆C:相切.解得,,椭圆方程为:.(2)法1:设,,显然直线l的斜率存在,设直线l的方程为:.直线方程和椭圆方程联立,由方程组消去y得,整理得.由,解得.直线方程和圆方程联立,由方程组消去y得,由,解得.又,则有.即,解得,故直线l的方程为或.分法2:设,,当直线l与x轴重合时,不符题意.设直线l的方程为:.由方程组消去x得,,解得.由方程组消去x得,,解得.又,则有.即,解得,故直线l的方程为或.【点睛】本题考查求椭圆的标准方程,以及直线和椭圆的位置关系,考查学生的分析和运算能力.20、(Ⅰ)单调递减区间为,单调递增区间为;(Ⅱ).【解析】
(Ⅰ)求出函数的定义域以及导数,利用导数可求出该函数的单调递增区间和单调递减区间;(Ⅱ)由题意可知在上恒成立,分和两种情况讨论,在时,构造函数,利用导数证明出在上恒成立;在时,经过分析得出,然后构造函数,利用导数证明出在上恒成立,由此得出,进而可得出实数的最大值.【详解】(Ⅰ)函数的定义域为.当时,.令,解得(舍去),.当时,,所以,函数在上单调递减;当时,,所以,函数在上单调递增.因此,函数的单调递减区间为,单调递增区间为;(Ⅱ)由题意,可知在上恒成立.(i)若,,,,构造函数,,则,,,.又,在上恒成立.所以,函数在上单调递增,当时,在上恒成立.(ii)若,构造函数,.,所以,函数在上单调递增.恒成立,即,,即.由题意,知在上恒成立.在上恒成立.由(Ⅰ)可知,又,当,即时,函数在上单调递减,,不合题意,,即.此时构造函数,.,,,,恒成立,所以,函数在上单调递增,恒成立.综上,实数的最大值为【点睛】本题考查利用导数求解函数的单调区间,同时也考查了利用导数研究函数不等式恒成立问题,本题的难点在于不断构造新函数来求解,考查推理能力与运算求解能力,属于难题.21、(1)见解析(2)【解析】
(1)由已知可证得平面,则有,在中,由已知可得,即可证得平面,进而证得结论.(2)过作交于,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度绿色建筑担保期限及环保技术应用合同3篇
- 2024年度新型院落房屋租赁及智慧社区建设合同3篇
- 2024年度文化旅游项目移交与品牌运营合同3篇
- 2024中小企业贷款合同范本与信用风险管理3篇
- 2025年山东淄博市市属事业单位综合类岗位招聘96人历年管理单位笔试遴选500模拟题附带答案详解
- 2025年山东济宁金乡县事业单位招聘(综合类)38人历年管理单位笔试遴选500模拟题附带答案详解
- 2025年山东济宁市兖州区事业单位招聘工作人员(卫生类)73人管理单位笔试遴选500模拟题附带答案详解
- 2025年山东济南市济阳区事业单位招聘人员(第三批)管理单位笔试遴选500模拟题附带答案详解
- 2025年山东枣庄峄城区事业单位公开招聘综合类工作人员59人历年管理单位笔试遴选500模拟题附带答案详解
- 2025年山东数据交易限公司招聘10人管理单位笔试遴选500模拟题附带答案详解
- 中医护理评估
- 2024年人教版六年级数学(上册)期末考卷及答案(各版本)
- 虚拟现实与增强现实
- 08J933-1体育场地与设施(一)
- 生猪屠宰兽医卫生检验人员理论考试题库及答案
- 《五年级上册科学苏教版F》期末检测
- 河南省平顶山市郏县2023-2024学年八年级下学期期末测试英语试题
- 托育园开业活动方案策划
- 2024年辽宁经济职业技术学院单招职业倾向性测试题库附答案
- 2024年鞍山职业技术学院单招职业适应性测试题库各版本
- 网络舆论传播规律及其导向研究
评论
0/150
提交评论