湖南省衡阳市耒阳市小水中学高一数学理摸底试卷含解析_第1页
湖南省衡阳市耒阳市小水中学高一数学理摸底试卷含解析_第2页
湖南省衡阳市耒阳市小水中学高一数学理摸底试卷含解析_第3页
湖南省衡阳市耒阳市小水中学高一数学理摸底试卷含解析_第4页
湖南省衡阳市耒阳市小水中学高一数学理摸底试卷含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省衡阳市耒阳市小水中学高一数学理摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知两点M(2,-3)、N(-3,-2),直线l过点P(1,1)且与线段MN相交,则直线的斜率k的取值范围是(

)A.k≥或k≤-4

B.-4≤k≤

C.≤k≤4

D.-≤k≤4参考答案:A略2.已知向量,,若,则m=A.

B. C.3

D.-3参考答案:C因为,所以.又,故,选C.

3.函数f(x)=x2-2(a-1)x+2在区间[4,+∞)上是增函数,则实数a的取值范围是A.a≤5

B.a>5

C.a≥5

D.a<5参考答案:A4.已知f(x)是定义在R上的偶函数,f(x)在x∈[0,+∞)上为增函数,且f(﹣3)=0,则不等式f(2x﹣1)<0的解集为(

)A.(﹣1,2) B.(﹣∞,﹣1)∪(2,+∞) C.(﹣∞,2) D.(﹣1,+∞)参考答案:A【考点】函数单调性的性质.【专题】计算题;函数的性质及应用.【分析】定义在R上的偶函数f(x)在区间[0,+∞)上单调递增,且f(3)=0,f(2x﹣1)<0,可得f(|2x﹣1|)<f(3),再利用单调性即可得出.【解答】解:∵定义在R上的偶函数f(x)在区间[0,+∞)上单调递增,且f(﹣3)=0,∴f(3)=0,f(x)=f(|x|),∴f(|2x﹣1|)<f(3),∴|2x﹣1|<3,解得﹣1<x<2.∴不等式f(x)<0的解集是(﹣1,2).故选:A.【点评】本题考查了函数的奇偶性、单调性及运用,考查运算能力,属于中档题.5.已知函数的图象恒过定点A,若点A也在函数的图象上,则=(

)(A)0

(B)1

(C)2

(D)3参考答案:B由题函数恒过定点(0,2),所以,解得b=1,故选B

6.已知,不等式对一切实数都成立},那么下列关系中成立的是(

)A.

B.

C.

D.参考答案:A7.设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()A.[-1,2] B.[-1,0]C.[1,2] D.[0,2]参考答案:D【分析】由分段函数可得当时,,由于是的最小值,则为减函数,即有,当时,在时取得最小值,则有,解不等式可得的取值范围.【详解】因为当x≤0时,f(x)=,f(0)是f(x)的最小值,所以a≥0.当x>0时,,当且仅当x=1时取“=”.要满足f(0)是f(x)的最小值,需,即,解得,所以的取值范围是,故选D.【点睛】该题考查的是有关分段函数的问题,涉及到的知识点有分段函数的最小值,利用函数的性质,建立不等关系,求出参数的取值范围,属于简单题目.

8.平行四边形中,(

)A.

B.

C.

D.参考答案:D9.三个数a=0.32,b=log20.3,c=20.3之间的大小关系是(

)A.a<c<b B.a<b<c C.b<a<c D.b<c<a参考答案:C【考点】指数函数单调性的应用.【专题】计算题.【分析】将a=0.32,c=20.3分别抽象为指数函数y=0.3x,y=2x之间所对应的函数值,利用它们的图象和性质比较,将b=log20.3,抽象为对数函数y=log2x,利用其图象可知小于零.最后三者得到结论.【解答】解:由对数函数的性质可知:b=log20.3<0,由指数函数的性质可知:0<a<1,c>1∴b<a<c故选C【点评】本题主要通过数的比较,来考查指数函数,对数函数的图象和性质.10.设α角属于第二象限,且|cos|=﹣cos,则角属于(

)A.第一象限B.第二象限C.第三象限D.第四象限参考答案:C考点:三角函数值的符号.专题:计算题.分析:由α是第二象限角,知在第一象限或在第三象限,再由|cos|=﹣cos,知cos<0,由此能判断出角所在象限.解答: 解:∵α是第二象限角,∴90°+k?360°<α<180°+k?360°,k∴45°+k?180°<<90°+k?180°k∈Z∴在第一象限或在第三象限,∵|cos|=﹣cos,∴cos<0∴角在第三象限.故选;C.点评:本题考查角所在象限的判断,是基础题,比较简单.解题时要认真审题,注意熟练掌握基础的知识点.二、填空题:本大题共7小题,每小题4分,共28分11.若等差数列满足,,则当

时,的前项和最大.参考答案:试题分析:由等差数列的性质得,,所以,且,所以等差数列的前八项都大于零,从第九项开始都小于零,则当时,数列的前项和最大.考点:等差数列的前项和.12.已知幂函数y=f(x)的图象过点(2,),则f(9)=

.参考答案:3【考点】幂函数的单调性、奇偶性及其应用.【分析】先由幂函数的定义用待定系数法设出其解析式,代入点的坐标,求出幂函数的解析式,再求f(16)的值【解答】解:由题意令y=f(x)=xa,由于图象过点(2,),得=2a,a=∴y=f(x)=∴f(9)=3.故答案为:3.13.已知集合,函数的定义域为集合B,则

.参考答案:略14.在平面直角坐标系中,若三条直线,和相交于一点,则实数的值为__________。参考答案:115.在等差数列中,已知,,则第3项

.参考答案:

5

略16.设则__________参考答案:17.函数的值域是

.参考答案:或.且,所以,根据正切函数的图像可知值域为或.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知圆与直线相切于点,其圆心在直线上,求圆的方程参考答案:设圆的方程为,其中圆心,半径为,由题意知圆心在过点且与直线垂直的直线上,设上,把点代入求得.由,得圆心..所以圆的方程为19.(13分)已知函数f(x)对一切实数x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(3)=﹣2.(1)试判定该函数的奇偶性;(2)试判断该函数在R上的单调性;(3)求f(x)在[﹣12,12]上的最大值和最小值.参考答案:【考点】抽象函数及其应用;函数奇偶性的判断.【专题】函数的性质及应用.【分析】(1)取x=y=0有f(0)=0,取y=﹣x可得,f(﹣x)=﹣f(x);(2)设x1<x2,由条件可得f(x2)﹣f(x1)=f(x2﹣x1)<0,从而可得结论;(3)根据函数为减函数,得出f(12)最小,f(﹣12)最大,关键是求出f(12)=f(6)+f(6)=2f(6)=2[f(3)+f(3)]=4f(3)=﹣8,问题得以解决【解答】解(1)令x=y=0,得f(0+0)=f(0)=f(0)+f(0)=2f(0),∴f(0)=0.令y=﹣x,得f(0)=f(x)+f(﹣x)=0,∴f(﹣x)=﹣f(x),∴f(x)为奇函数.(2)任取x1<x2,则x2﹣x1>0,∴f(x2﹣x1)<0,∴f(x2)﹣f(x1)=f(x2)+f(﹣x1)=f(x2﹣x1)<0,即f(x2)<f(x1),∴f(x)为R上的减函数,(3)∵f(x)在[﹣12,12]上为减函数,∴f(12)最小,f(﹣12)最大,又f(12)=f(6)+f(6)=2f(6)=2[f(3)+f(3)]=4f(3)=﹣8,∴f(﹣12)=﹣f(12)=8,∴f(x)在[﹣12,12]上的最大值是8,最小值是﹣8【点评】本题考查抽象函数及其应用,考查函数的奇偶性与单调性及函数的最值,赋值法是解决抽象函数的常用方法,属于中档题.20.(本小题满分12分)已知向量,设函数.(1)若函数f(x)的图象关于直线对称,,求函数f(x)的单调递增区间;(2)在(1)的条件下,当时,函数f(x)有且只有一个零点,求实数b的取值范围.参考答案:解:向量(1)函数的图象关于直线对称,,解得.

…………(3分)由,解得.故函数的单调递增区间为

…………(6分)(2)由(1)知令,则由=0,得由题意,得只有一个解,即曲线与直线在区间上只有一个交点.结合正弦函数的图象可知,,或,解得.

…………(12分)

21.已知函数(1)求证:函数在区间上是单调减函数,在区间上是单调增函数;(2)求函数在上的值域.参考答案:解:(1)任设,且当时,,,则;故函数在区间上是单调减函数,当时,,,则;-故函数在区间上是单调增函数.(2)因为,且根据(1)知,在区间上是单调增函数,则时,综上,函数在上的值域为略22.(12分)正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,(I)求证:;(II)设线段的中点为,在直线上是否存在一点,使得PM∥平面BCE?若存在,请指出点的位置,并证明你的结论;若不存在,请说

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论