对函数的相关概念及性质分析_第1页
对函数的相关概念及性质分析_第2页
对函数的相关概念及性质分析_第3页
对函数的相关概念及性质分析_第4页
对函数的相关概念及性质分析_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

金太阳新课标资源网第5页共5页金太阳新课标资源网对函数的相关概念及性质分析导读:绝对值函数是个很广的概念,可分为两大部分,一部分是绝对值施加在X上的,另一部分是绝对值号施加在Y上的,如y=|x||y|=x就记住绝对值号在谁上头就把原图像根据哪一个轴做轴对称变换,记住这一点,不管多复杂的解析式都可以照此办理.绝对值函数可以看作初等函数。3.1导数,是微积分中的重要基础概念。

关键词:函数,概念,性质

首先是初等函数相关问题分析:

1.绝对值函数的概念及性质

绝对值函数是个很广的概念,可分为两大部分,一部分是绝对值施加在X上的,另一部分是绝对值号施加在Y上的,如y=|x||y|=x就记住绝对值号在谁上头就把原图像根据哪一个轴做轴对称变换,记住这一点,不管多复杂的解析式都可以照此办理.绝对值函数可以看作初等函数。

1.1绝对值函数的定义域,值域,单调性

例如f(x)=a|x|+b是

定义域:即x的取值集合,为全体实数;

值域:不小于b的全体实数

单调性:当x<0,a>0时,单调减函数;

>>增;

<<增;

<<减;

1.2绝对值函数图象规律:

|f(x)|将f(x)在y轴负半轴的图像关于x轴翻折一下即可,在y轴正半轴的图像不变。

f(|x|)将f(x)在x轴负半轴的图像关于y轴翻折一下即可,在x轴正半轴的图像不变。。

1.3带绝对值的函数求导,即将函数分段。

2.取整函数的概念与性质

2.1取整函数是:设x∈R,用[x]或int(x)表示不超过x的最大整数,并用"{x}"表示x的非负纯小数,则y=[x]称为取整函数,也叫高斯函数。任意一个实数都能写成整数与非负纯小数之和,即:x=[x]+{x},其中{x}∈[0,+∞)称为小数部分函数。

2.2取整函数的性质:a对任意x∈R,均有x-1<[x]≤x<[x]+1.b对任意x∈R,函数y={x}的值域为[0,1).c取整函数(高斯函数)是一个不减函数,即对任意x1,x2∈R,若x1≤x2,则[x1]≤[x2].d若n∈Z,x∈R,则有[x+n]=n+[x],{n+x}={x}.后一式子表明y={x}是一个以1为周期的函数.e若x,y∈R,则[x]+[y]≤[x+y]≤[x]+[y]+1.f若n∈N+,x∈R,则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论