版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
双容水箱液位控制系统郭晨雨04123096914282178qq.目录摘要2一.PID控制原理、优越性,对系统性能的改善5二.被控对象的分析与建模7三,PID参数整定方法概述9PID控制器中比例、积分和微分项对系统性能影响分析9比例作用9积分作用10微分作用11PID参数的整定方法13临界比例度法15PID参数的确定18四.控制结构19利用根轨迹校正系统194.2利用伯德图校正系统234.3调整系统控制量的模糊PID控制方法254.3.1模糊控制部分264.3.2PID控制部分30五.控制器的设计30六.仿真结果与分析32七.结束语34参考文献35摘要:针对双容水箱大滞后系统,采用PID方法去控制。首先对PID控制中各参数的作用进行分析,采用根轨迹校正、伯德图校正的方法,对系统进行校正。最后采用调整系统控制量的模糊PID控制的方法,对该二阶系统进行控制。同时,在MATLAB下,利用Fuzzy工具箱和Simulink仿真工具,对系统的稳定性、反应速度等各指标进行分析。关键字:双容水箱,大滞后系统,模糊控制,PID,二阶系统,MATLAB,SimulinkAbstract:ForTwo-capacitywatertankbiglagsystem,usingPIDtocontrolthissystem.First,toanalyzetheeffectofeachparameterofPID.Andtheroot-locustechniqueandbodediagramisadoptedtodesignthecorrectingUnit.Then,fuzzyPIDcontrolmethodwasusedtoadjustthissecond-ordersystem.AndasimulationmodelofthissystemisbuiltwithMATLABFuzzyandSIMULINK,withitanalyzingthesystemstability,reactionvelocityandotherindexs.Keywords:two-capacitywatertank,biglagsystem,fuzzycontrol,PID,second-ordersystem一.PID控制原理、优越性,对系统性能的改善当今的自动控制技术绝大多数部分是基于反馈。反馈理论包括三个基本要素:测量、比较和执行。测量关心的是变量,并与期望值相比较,以此偏差来纠正和调节控制系统的响应。反馈理论及其在自动控制的应用的关键是:作出正确的测量与比较后,如何将偏差用于系统的纠正和调节。在过去的几十年里,PID控制,即比例-积分-微分控制在工业控制中得到了广泛的应用。虽然各种先进控制方法不断涌现,但PID控制器由于结构简单,在实际应用中较易于整定,且具有不需精确的系统模型等优势,因而在工业过程控制中仍有着非常广泛的应用。而且许多高级的控制技术也都是以PID控制为基础的。下面是典型的PID控制系统结构图:图1-1其中PID控制器由比例单元(P)、积分单元(1)和微分单元(口)组成。(1)比例”)调节作用是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。(2)积分(1)调节作用是使系统消除稳态误差,提高无差度。因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。(3)微分(口)调节作用微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。因此,可以改善系统的动态性能。在微分时间选择合适情况下,可以减少超调,减少调节时间。微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器。二.被控对象的分析与建模该系统控制的是有纯延迟环节的二阶双容水箱,示意图如下:图2-1RR为阀门1、2的阻力,12RR为阀门1、2的阻力,12则根据物料平衡对水箱1A Ah称为液阻或流阻,经线性化处理,有:Aq=R2有:Aq-Aq=Adhi2idtA AhAq= i2R2拉式变换得:
AQ(S)-AQ(S)=ASAH(S)11AH(S)
1 R2对水箱2:AqAq-Aq23dAh=A22dtAhTOC\o"1-5"\h\zAq— 23R3拉式变换得:AQ(S)-AQ(S)—ASAH(S)2 3 22ASAH(S)AQ(S)― 2 3 R2W(SW(S)—0AH(S)
2
AQ(S)
1RK 3 ― (ARS+1)(ARS+1) (TS+1)(TS+1)12 23 1 2其中T―AR为水箱1的时间常数,T=AR水箱2的时间常数,K1 12 2 23为双容对象的放大系数。若系统还具有纯延迟,则传递函数的表达式为:AQ(S)~(TS+1)(TS+1)其中T0延迟时间常数。在参考各种资料和数据的基础上,可设定该双容水箱的传递函数为:e—5s100y2+20s+1三.PID参数整定方法概述PID控制器中比例、积分和微分项对系统性能影响分析在MATLAB中建立对象的传递函数模型G0(S)=100s2+20s+1e—5"在命令行中输入:sys=tf(2,[100201],'inputdelay',5);sysx=pade(sys,1);比例作用分析在不同比例系数下,系统的阶跃响应图,输入命令:P=[0.10.51510];figure,holdonfori=1:length(P)
G=feedback(P(i)*sys,1);step(G)end得到图形如下:StepRu即口rau图3-1图中分别绘出了K为0.1,0.5,1,5,10时的阶跃响应图,可知当K一大时系统的稳态误差不断减小,响应时间加快,并出现振荡。积分作用分析在不同积分常数下,系统的阶跃响应图,输入命令:Ti=[3:0.5:5];t=0:2:100;figure,holdonKp=1;fori=1:length(Ti)Gc=tf(Kp*[1,1/Ti(i)],[1,0]);G=feedback(Gc*sys,1);step(G,t)end得图形如下:图3-2由图可知,积分作用虽可消除误差,但加入积分调节可使系统稳定性下降,途中甚至可出现不稳定的情况,同时动态响应变慢,调节时间变大。微分作用分析在不同微分时间常数下,系统的阶跃响应图,输入命令:Td=[1:4:20];t=0:1:100;figure,holdonfori=1:length(Td)Gc=tf([5*Td(i),5,1],[5,0]);G=feedback(sys*Gc,1);step(G,t)end得图形如下:卿蜘匕限图3-3图中绘出了Td为1逐渐增大至20时的系统阶跃响应变化趋势,可知微分时间常数增加时,系统上升时间增加了,但是调节时间减少,更重要的是由于带有预测作用,惯性系统的超调量大大减小了。PID参数的整定方法采用PID控制器时,最关键的问题就是确定PID控制器中比例度PB、积分时间1》和微分时间Td。一般可以通过理论计算来确定这些参数,但往往有误差,不能达到理想的控制效果。因此,目前,应用最多的有工程整定法:如经验法、衰减曲线法、临界比例度法和反应曲线法,各种方法的大体过程如下:(1)经验法又叫现场凑试法聊先确定一个调节器的参数值PB和Ti,通过改变给定值对控制系统施加一个扰动,现场观察判断控制曲线形状。若曲线不够理想,可改变PB或Ti,再画控制过程曲线,经反复凑试直到控制系统符合动态过程品质要求为止,这时的PB和Ti就是最佳值。如果调节器是PID三作用式,那么要在整定好的PB和Ti的基础上加进微分作用。由于微分作用有抵制偏差变化的能力,所以确定一个Td值后,可把整定好的PB和Ti值减小一点再进行现场凑试,直到PB、Ti和Td取得最佳值为止。显然用经验法整定的参数是准确的。但花时间较多。为缩短整定时间,应注意以下几点:①根据控制对象特性确定好初始的参数值PB、Ti和Td。可参照在实际运行中的同类控制系统的参数值,或参照表3-4-1所给的参数值,使确定的初始参数尽量接近整定的理想值。这样可大大减少现场凑试的次数。②在凑试过程中,若发现被控量变化缓慢,不能尽快达到稳定值,这是由于PB过大或Ti过长引起的,但两者是有区别的:PB过大,曲线漂浮较大,变化不规则,Ti过长,曲线带有振荡分量,接近给定值很缓慢。这样可根据曲线形状来改变PB或Tio③PB过小,Ti过短,Td太长都会导致振荡衰减得慢,甚至不衰减,其区别是PB过小,振荡周期较短;不过短,振荡周期较长;Td太长,振荡周期最短。④如果在整定过程中出现等幅振荡,并且通过改变调节器参数而不能消除这一现象时,可能是阀门定位器调校不准,调节阀传动部分有间隙(或调节阀尺寸过大)或控制对象受到等幅波动的干扰等,都会使被控量出现等幅振荡。这时就不能只注意调节器参数的整定,而是要检查与调校其它仪表和环节。(2)衰减曲线法该方法是以4:1衰减作为整定要求的,先切除调节器的积分和微分作用,用凑试法整定纯比例控制作用的比例度PB(比同时凑试二个或三个参数要简单得多),使之符合4:1衰减比例的要求,记下此时的比例度PBs和振荡周期Ts。如果加进积分和微分作用,可按相应的表格给出经验公式进行计算。若按这种方式整定的参数作适当的调整。对有些控制对象,控制过程进行较快,难以从记录曲线上找出衰减比。这时,只要被控量波动2次就能达到稳定状态,可近似认为是4:1的衰减过程,其波动一次时间为Ts。(3)临界比例度法用临界比例度法整定调节器参数时,先要切除积分和微分作用,让控制系统
以较大的比例度,在纯比例控制作用下运行,然后逐渐减小PB,每减小一次都要认真观察过程曲线,直到达到等幅振荡时,记下此时的比例度PB/称为临界比例度)和波动周期丁口然后按对应的表给出的经验公式求出调节器的参数值。按该表算出参数值后,要把比例度放在比计算值稍大一点的值上,把Ti和Td放在计算值上,进行现场观察,如果比例度可以减小,再将PB放在计算值上。这种方法简单,应用比较广泛。但对PBk很小的控制系统不适用。(4)反应曲线法前三种整定调节器参数的方法,都是在预先不知道控制对象特性的情况下进行的。如果知道控制对象的特性参数,即时间常数1、时间迟延g和放大系数十则可按经验公式计算出调节器的参数。利用这种方法整定的结果可达到衰减率9=0.75的要求。临界比例度法在本设计中,我们组采用了临界比例度法来进行PID参数的整定,下面是用临界比例度法整定PID参数的过程在5伊山由卜中设计简单的PID控制系统结构图如下:图3-4采用临界比例度法整定PID参数,先切除积分和微分作用,让控制系统以较大的比例度,在纯比例控制作用下运行,然后逐渐减小PB,直到达到等幅振荡时,记下此时的比例系数约为2.45(称为临界比例度)和波动周期丁卜5为32s,如下图:图3-5然后按对应的表给出的经验公式求出调节器的参数值。仅加入比例环节时,设P为1.225,系统阶跃响应图如下:图3-6
由图知系统超调量较小,调节时间为1205左右,但是存在较大的稳态误差为0.3左右,由前面分析欲减小稳态误差需加入积分环节,设P为1.1,Ti为0.0375,此时系统阶跃响应图如下:图3-7由图知加入积分环节后系统的稳态误差大大减小,也验证了其消除误差的作用,但是调节时间加长到约为1405,同时超调量加大近38%,使用PID控制器:图3-8系统稳态误差基本为零,调节时间略有减小,但是超调量接近50%,远远达不到系统动态性能的要求。减小比例系数后发现系统超调量逐渐下降,但是响应速度逐渐减慢,调节时间增加,于是增大微分时间常数以加快响应速度,根据经验法逐步调整各参数,得基本满足系统动态性能的图形如下:图3-9此时系统各项指标基本令人满意,只是调节时间稍长,为80s左右。采用临界比例度法得到的PID参数为:Kp=1.47Ki=0.0625Kd=4PID参数的确定该控制器采用的是临界比例系数法对PID参数进行初步整定,然后根据控制的效果,对PID参数进行调整。最后确定的PID参数为:Kp=0.465Ki=0.06Kd=5.2四.控制结构2在这次设计中,我们首先对系统的传递函数GSS)=10也+20k+11es进行根轨迹校正和波的图校正,然后采用调整系统控制量的模糊控制PID控制方法,对系统的控制器进行分析。4.1利用根轨迹校正系统校正前开环系统根轨迹如下:RndLKIE♦ Q -T RmAXd- - 1 2图4-1设定系统校正指标要求为:稳态误差<0.05,超调量o<15%,pt<20s(A),则校正过程如下:sMATLAB中输入如下命令:>>KK=20;bp=0.15;ts=20;delta=0.02;>>ng0=[2];dg0=[100,20,1];g0=tf(KK*ng0,dg0); ;建立传递函数模型s=bpts2s(bp,ts,delta)s=-0.2034+0.3368i ;期望的闭环主导极点>>[ngc,dgc]=rg」ead(KK*ng0,dg0,s);;根轨迹法求带惯性的PD控制器gc=tf(ngc,dgc)Transferfunction:2.014s+0.5583s+0.5583;校正环节传递函数>>g0c=tf(g0*gc);b1=feedback(sys,1);b2=feedback(g0c,1);step(b1,'r--',b2,'b');gridon;单位负反馈;校正前后系统的阶跃响应SleoR-mcdhwSysifmb2Tims「mck3.S1ArrpELbd&.1.42% EystembS—"工L—51-SHItidOTmel&HCi:15.iSTinwiwcl图4-2验算时域性能指标:[pos,tr,ts,tp]=stepchar(b2,delta)pos=46.1787,tr=2.4720,ts=15.5381,tp=3.5314从验算结果来看,稳态误差及调节时间达到设计要求,但超调量太大远远不能满足要求,需要调整闭环主导极点的位置。查看此时预设的主导极点的阻尼比和无阻尼自然频率:>>[kosi,wn]=s2kw(s)kosi=0.9477,wn=0.2146再提高阻尼比及自然频率的值分别为0.99,0.99得闭环极点:>>s=kw2s(0.99,0.99)s=-0.9801+0.1397i再运行PD控制器设计得:Transferfunction:6.838s+2.589s+2.589阶跃响应图如下:我_n=m4Systemb2PeakBmphuds:1.12Overahoat(%):15Attiite2.75StepRwp-D-nw0 10 20 30Tinis(s&c)图4-3验算各性能指标:>>[pos,tr,ts,tp]=stepchar(b2,delta)pos=14.3869,tr=1.9006,ts=6.1242,tp=2.7453完全满足设计性能指标要求。利用伯德图校正系统校正指标要求:K>40,丫=60。,3=5rad/s,幅值裕度>15dB。V cKK=20;Pm=60;wc=5;ng0=KK*[2];dg0=[100,20,1];g0=tf(ng0,dg0);
w=logspace(-1⑶;[ngc,dgc]=fg」ead_pm_wc(ng0,dg0,Pm,wc,w);gc=tf(ngc,dgc);g0c=tf(g0*gc);b1=feedback(sys,1);b2=feedback(g0c,1);step(b1,'r—',b2,'b');gridonfigure,bode(sys,'r--',g0c,'b',w),gridon校正前后伯德图如下:10Syste-mgOuFrMuencY(r3di'i5-*c):1.3Ma口闻日>:dB:l;G.Z73Frequercyi代泌sc:图4-4得校正前后阶跃响应如下:St中口则冲13图4-5调节时间明显减小,响应速度加快。验算各性能指标如下:[gm,pm,wcg,wcp]=margin(g0c)得截止频率为1.33,离设计相差较大,相角裕度为73度也偏大,效果不是太理想,还需加入二级控制装置。调整系统控制量的模糊PID控制方法该控制方法采用的是模糊控制和PID控制相结合,这类控制器的特点是在大偏差X围内利用模糊推理的仿佛调整系统的控制量U,而在偏差X围内转换成PID控制,二者的转换根据事先给定的偏差X围自动实现。系统框图如下:Fuzzy控制器 Iel<le0l?1,e 一.可修编.图4-6当S川日前的输入误差值的绝对值N0.5时,采用模糊控制;当5川日前的输入误差值绝对值<0.5时,采用PID控制。模糊控制部分1.控制器设计(1)模糊集及论域定义对误差E、误差变化EC及控制量U的模糊集及论域定义如下:E、EC和U的模糊集均为{NB,NM,NS,ZO,PS,PM,PB}E和EC论域均为{-3,-2,-1,0,1,2,3}U的论域为{-4.5,-3,-1.5,0,1,5,3,4.5}£的隶属函数图形如下图图4-7EC的隶属函数图形如下图图4-8U的隶属函数图形如下图图4-9(2)模糊控制规则模糊控制规则如下表表4-1NBPSPSPSPSPMPBPBNMNSPSPSPSPMPMPBNSNMNSOOPSPMPMONBNMNSOPSPMPMPSNBNMNSOOPSPMPMNBNBNMNSNSPSPSPBNBNBNMNSNSNSNS(3)模糊变量的赋值表模糊变量£的赋值分别如表4-2E3 --2-10123N10.500.50000B,01.00.51.00.50NM0000.500000NS0001.00.51.000O0000.50.50.51.00PS00000.50PM000PB01.0模糊变量EC的赋值分别如
表4-3E3--2-10123N10.500.50000B,01.00.51.00.50NM0000.500000NS0001.00.51.000O0000.50.50.51.00PS00000.50PM000PB01.0模糊变量U的赋值分别如表4-4-4-3-1.50134E.5.5.5N1.0.500.50000B01.00.51.00.50000NM0000.50.51.0000NS0001.00.500O0000.500.51.00PS0000.50PMPB0001.0得到的模糊控制器的输出曲面如图图4-104.3.2PID控制部分PID部分是当输入的恰1<0.5时,主要是控制系统的稳定性。PID参数的主要通过临界比例度法进行整定,然后根据实际的控制效果,进行调节。最后确定的PID参数如下:Kp=0.465Ki=5.2Kd=0.08五.控制器的设计模糊控制器的输入为误差和误差变化率:误差e=r-y,误差变化率ec=de/dt,其中「和丫分别为液位的给定值和测量值。把误差和误差变化率的精确值进行模糊化变成模糊量£和£。从而得到误差£和误差变化率EC的模糊语言集合,然后由E和EC模糊语言的的子集和模糊控制规则口(模糊关系矩阵)根据合成推理规则进行模糊决策,这样就可以得到模糊控制向量U,最后再把模糊量解模糊转换为精确量u,再经D/A转换为模拟量去控制执行机构动作。图5-1该控制器的特点是在大偏差X围内利用模糊推理的方法调整系统的控制量U,能够获得较好的动态性能,反应时间加快。而在小X围偏差X围内转换成PID控制,获得较好的静态性能。从仿真曲线和性能指标可以看出,与常规的PID控制相比,模糊PID控制器能使系统响应的超调减小,反应时间加快。尤其是在系统具有延迟的模型结构和参数不确定的情况下,模糊PID控制具有更佳的控制效果。六.仿真结果与分析本设计采用了乂米匕匕的Simulink工具箱和Fuzzy工具箱进行了系统仿真,其中系统的传递函数为 e-5s100s2+20s+1其中Simulink的仿真计算图如下图6-1其中PID参数为:Kp=0.465Ki=0.08Kd=5.2模糊控制和PID控制转换的设定值为:|e0|=0.5当只有PID调节,没有加入模糊控制时的仿真曲线如下:
图6-2增加了模糊控制后的仿真曲线:图6-3增加了随机动态扰动后的仿真曲线:1.2D.B1.2D.B■0.E;■0.-1■0.2■D-0图6-4从上面的图像对比可知,模糊控制能够使得反应时间加快,明显改善了系统的动态特性。而在增加了随机扰动后,能够看到系统任然能够保持较好的稳态特性,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《光电信息科学与工程专业学科前沿讲座》课程教学大纲
- 数字化技术在中国会计师事务所中应用的研究报告 2024
- 第四节 人本取向课件
- 2024年低成本门面出租合同范本
- 2024年出品商授权销售合同范本
- 2024年伯方煤矿工人合同范本
- 中医烧伤的治疗原则
- 2024-2025学年第一学期九年级核心素养展示活动(语文)参考答案
- 中级茶艺师培训课件
- 医疗课件模板下载
- 预防事故和职业病的措施及应注意的安全事项
- 丰田核心竞争力及战略分析课件
- 高风险作业施工安全措施
- 生物分离工程吸附分离及离子交换
- 外科手术中肝脏切除技术讲解
- 机动车驾驶培训汽车安全驾驶课件
- 《人员烫伤应急预案》课件
- 驾校年度安全生产目标方案
- 2024年插花花艺师理论知识考试题库(含答案)
- 软硬件集成方案
- 自身免疫性脑炎护理
评论
0/150
提交评论