2024 全球6G技术大会 -10.0A GPT and Communication_第1页
2024 全球6G技术大会 -10.0A GPT and Communication_第2页
2024 全球6G技术大会 -10.0A GPT and Communication_第3页
2024 全球6G技术大会 -10.0A GPT and Communication_第4页
2024 全球6G技术大会 -10.0A GPT and Communication_第5页
已阅读5页,还剩163页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1/92

ExecutiveSummary

Drivenbythejointeffortofkeytechnologiessuchasbigdataandcloudcomputing,asizablenumberofthegenerativepre-trainedtransformer(GPT)largemodels,representedbyChatGPT,haveemerged,showinghighlycreativecontentgenerationcapabilitiesandprovidinghighlyintelligenthuman-computerinteractionexperience.Foralongtime,therehavebeenmanytechnicalproblemsincommunicationthataredifficulttomodelaccuratelyorsolveefficientlyusingtraditionalmethods.Meanwhile,GPTdemonstratesthepotentialtoimprovetheperformanceofinformationcommunicationservicesandintelligentautonomousnetworks.Inaddition,therapiddevelopmentandbroadapplicationsofGPTalsoneedtobesupportedbyacommunicationnetworkwithlargebandwidth,lowlatency,and

highreliability.

Therefore,fromtheperspectiveofcommunicationpractitioners,thiswhitepaperexplorestheinterrelationshipbetweenGPTandcommunication.Firstly,Chapter1sketchestheconcept,developmentprocess,andresearchstatusofGPTlargemodels.Secondly,Chapter2discussesthenewapplicationsofGPTinthecommunicationindustry,andthepositionofGPTinnetworkintelligentautonomy.Thirdly,Chapter3exploreshowthecommunicationnetworksenablethebroadapplicationsofGPT,andgivesatypicalideaoffuturenetworkdesign.Moreover,Chapter4analyzestheprocessofGPTandcommunicationfromindependentevolutiontocollaborativedevelopment,aswellasapplicationsof“6G+GPT”empoweringthedigitaltransformationofindustries.Inaddition,Chapter5pointsoutthefivemostobviousproblemsandchallengesintheintegrationprocessof“GPT+Communication”andprovidessomesolutions.Subsequently,Chapter6putsforwardseveralsuggestionsonhowGPTandthecommunicationindustrycandeveloptogether,aswellasthe

prospectsforthefuture.Finally,Chapter7concludesthiswhitepaper.

2/92

Contents

ExecutiveSummary 1

0Preface 4

1.GPTLeadstheTideofArtificialIntelligenceDevelopment 8

1.1.BasicConceptsofGPT 8

1.1.1GenerativePre-trainedTransformer 8

1.1.2LargeModel 9

1.1.3TransformerArchitecture 11

1.2.DevelopmentHistoryofGPT 13

1.3.CurrentResearchStatusofGPT 15

1.3.1ForeinResearchStatus 16

1.3.2DomesticResearchStatus 18

1.3.3InternationalOrganizations 19

2.GPTEmpowerstheCommunicationIndustry 20

2.1.GPTStimulatesNewApplicationsandReformsinCommunication 20

2.1.1IntelligentCustomerService 22

2.1.2AutomationSimulation 23

2.1.3EnhancedSemanticCommunication 24

2.1.4ReshapingtheFieldofChipDesign 25

2.2.GPTPromotesIntelligentAutonomyinCommunicationNetworks 26

2.2.1GPTReshapesNetworkPlanning 28

2.2.2GPTEnhancesSlicingDeployment 29

2.2.3GPTSimplifiesNetworkOperationsandMaintenance 30

2.2.4GPTAcceleratesNetworkOptimization 32

3.CommunicationNetworksEnableGPTUbiquitousApplications 35

3.1CommunicationNetworksGuaranteetheLandingofGPTApplications 35

3.2FutureNetworkTechnologySupportsGPTApplications 38

3.2.1TypicalApproachestoFutureNetworkDesign 38

3.2.26GNetworkwithNativeSupportforGPTApplications 39

3.3NewNetworkArchitectureSupportsGPTCapabilitySinking 41

3.3.1AdaptiveSlicing 41

3.3.2DistributedLearning 43

3.3.3EdgeIntelligence 43

4.CollaborativeDevelopmentofGPTandCommunication 46

4.1.GPTandCommunicationfromIndependentEvolutiontoCloseIntegration 46

4.1.1TrendsintheIntegrationofGPTandCommunication 46

4.1.2IntegrationofGPTand5GNetworks 47

4.2.IntegrationandDevelopmentofGPTwith6GCommunicationNetworks 48

4.2.1GPTSupportsMassiveDataProcessing 49

4.2.2GPTPromotesNetworkSelf-Service 50

3/92

4.2.3GPTAssistsinNetworkResourceOrchestration 50

4.2.4GPTConstructsNetworkEndogenousSecurity 50

4.3.“6G+GPT”EmpowersIndustryDigitalTransformation 51

4.3.1“6G+GPT”EmpowersSmartIndustry 52

4.3.2“6G+GPT”EmpowersSmartHealthcare 53

4.3.3“6G+GPT”EmpowersSmartTransportation 53

4.3.4“6G+GPT”EmpowersSmartAgriculture 54

4.3.5“6G+GPT”EmpowersSmartHome 55

4.3.6“6G+GPT”EmpowersDigitalEntertainment 55

5.ProblemsFacedbytheDevelopmentof“GPT+Communication”Integration56

5.1.ScarcityofHigh-QualityTrainingDatainCommunicationLeadstoPoorAccuracyand

GeneralizationofSpecializedModels

5

7

5.2.InsufficientOn-DeviceComputingPowerandHardwareResourcesPoseChallengesto

LightweightDeploymentofLargeModels

6

0

5.3.DifficultiesinCloud-Edge-TerminalHeterogeneousNetworkCollaborationLeadtoPoor

StabilityPerformanceofLargeModels

6

2

5.4.ServerInterconnectionBandwidthBottlenecksResultinLongTrainingTimeandLow

InferenceEfficiency

6

5

5.5.LaggingLegalRegulationsRelatedtoLargeModelsResultinHighRisksofSecurity,

Privacy,andEthicalIssues

6

7

6.DevelopmentRecommendationsandFutureProspects 71

6.1.DevelopmentRecommendations 71

6.1.1AcceleratingtheConstructionofAIComputingPowerandProvidingInfrastructure

Support

7

1

6.1.2StrengtheningJointTrainingofSchoolsandEnterprisestoFilltheGapin

InnovativeTalents

7

4

6.1.3AcceleratingtheFormulationofRelevantPoliciesandEstablishingPlatformsto

GuideDevelopment

7

6

6.2.FutureProspects 78

6.2.1BreakthroughsinCoreTechnologiesandSignificantEnhancementofKey

Capabilities

7

8

6.2.2ContinuousImprovementinSystemConstructionandRapidDevelopmentofthe

DigitalEconomy

8

0

6.2.3ExpansionofApplicationScenarios,GradualIntegrationandSymbiosis 82

7.Conclusion 84

References 85

Abbreviations 90

Acknowledgments 92

4/92

0Preface

Inrecentyears,asArtificialIntelligence(AI)technologyhascontinuedtoadvance,particularlyintheareasofreinforcementlearning,largemodels,andgenerativecontent,variousindustrieshavebeenactivelyexploringitsapplications.AttheendofNovember2022,OpenAIreleasedtherapidlypopularizedchatbotChatGPT,whichpossessesastonishingnaturallanguageunderstandingandgenerationcapabilities,attractingwidespreadattentionfromsociety.Subsequently,inMarch2023,thelaunchoftheupgradedversionGPT-4multimodallargemodelreignitedenthusiasmforgenerativeAI,leadingtotheemergenceofnumerouslargemodelsin

quicksuccession.

Sincetheinceptionoftext-basedconversationalinteractions,GPThasprofoundlyimpactedpeople’sproductionandliveswithinafewshortyears,bringingaboutsignificantchanges.Manypeoplebelievethatitwillcontinuetobringdisruptivechanges.BillGatespointedoutthatlargemodelsrepresentthemostrevolutionarytechnologicaladvancementinover40years;NVIDIACEOJensenHuanglikenedtheemergenceoflargemodelstothe“iPhonemoment”ofAI;BaiduCEORobinLiproposedthatlargemodelsarepreparedtochangetheworldatthe2023ZhongguancunForum.FromtheripplescausedbyChatGPTtotheglobalwaveitunleashed,GPTlargemodelshavebecomeoneofthemostdiscussedtopicstoday,signalingacrucialturningpointinthedevelopmentofgenerativeAI;theyear2023

willalsoundoubtedlyleaveasignificantmarkinthehistoryofAIdevelopment.

Asanindustryfacilitatinginformationexchangeandtransmissionamonghumans,nature,andmachines,thecommunicationindustryiscloselyintertwinedwiththedevelopmentoflargemodeltechnology.Thecommunicationindustryitselfhasahighdegreeofdigitalizationandneedstohandlecomplexdata.TheintroductionofGPTcanstreamlineasignificantamountofwork,bringingaboutsignificantcapacityenhancementsforcommunicationoperators,particularlyintherealmsofnetworkoperationsandmaintenance(O&M)andservicedelivery,makingthemmoreintelligent.Intheeraoflargemodels,withtheadvancementofGPTtechnology,thedemandforcomputingpower,data,andalgorithmswillexperienceexplosivegrowth,requiringcommunicationinfrastructuretoprovidesupport.Inthefuture,howGPT

empowersthecommunicationindustryandhowthecommunicationindustrysupports

5/92

GPTarequestionsthateverycommunicationprofessionalshouldearnestly

contemplate.

Therefore,thiswhitepaperisbasedonthedevelopmenthistoryandlatestresearchadvancementsofGPTlargemodels.Ontheonehand,itelaboratesontheinnovativeapplicationsofGPTwithinthecommunicationindustryinspecificscenarios.Ontheotherhand,itinvestigateshowfuturecommunicationnetworksprovidenativesupportforGPTintermsofarchitectureandkeytechnologies.Subsequently,combiningGPTwithcommunication,itproposesaroadmapforthedigitalandintelligenttransformationofkeyindustriesthroughtheircollaborativedevelopment,whilealsopointingouttheproblemsandchallengesintheintegrationanddevelopmentprocess.Inresponsetotheseissues,correspondingdevelopmentrecommendationsandprospectsareprovided.Finally,thewholecontentofthiswhitepaperissummarized.Thecompletechapterstructureofthiswhitepaperisillustrated

inFigure0-1below.

6/92

Figure0-1WhitePaperChapterStructureDiagram

ThiswhitepaperwasjointlyorganizedandauthoredbytheBeijingInstituteofTechnology,withparticipationfrom18entities,includingthethreemajortelecomoperators(ChinaMobile,ChinaUnicom,andChinaTelecom),seventop-tieruniversities,threerenownedenterprises,andfiveleadingresearchinstitutesintheindustry.Spanningovereightmonths,theprocessinvolvedthein-depthparticipationofover50expertsandscholars,fromconductingresearchandtrackingthecutting-edgestatusofGPTlargemodelstoexploringtherelationshipbetweenGPTandcommunication,conceptualizingtheoutlineofthewhitepaper,arrangingspecificchaptercontent,andassigningwritingtasks.Itunderwentmorethantwentyroundsofdiscussionsandrevisionsbeforereachingitscompletion.Duringthisperiod,some

participatingentitiesalsosuccessfullycollaboratedtoapplyforaninternational

7/92

cooperationprojectfromtheMinistryofScienceandTechnologyofthePeople’sRepublicofChina,titled“ResearchonKeyTechnologiesofIntegratedMultidimensionalIntelligentOrchestrationinCloudComputingNetworksBasedon

LargeModels,”therebybettersupportingthecompletionofthiswhitepaper.

WebelievethatAItechnologyisstillinarapidlydevelopingstage,andtheintegrationandmutualsupportbetweenGPTlargemodelsandcommunicationnetworkscancontinuallyexpandinnovativeapplicationscenariosandimproveecosystemdevelopment,thusjointlypromotingtechnologicalprogressandthe

developmentofvariousindustries.

8/92

1.GPTLeadstheTideofArtificialIntelligenceDevelopment

WiththeadvancementofAIanddeeplearningtechnologies,theconceptof“largemodels”hascomeintofocus,withChatGPTbeingthemostnotable.OnNovember30,2022,OpenAIofficiallyreleasedtheAIchatbotChatGPT,whichrepresentsArtificialIntelligenceGeneratedContent(AIGC)inthefieldofnaturallanguage.Itspowerfulcapabilitieshavechangedthewaymanypeopleworkandlive,sparkinganewwaveofAIgloballyandattractingwideattentionfrombothindustryandacademia.OnMarch14,2023,theofficiallyreleasedGPT-4underwentfurtherupgrades,significantlyrelaxingtextinputrestrictions,improvingansweraccuracy,andevenenablingdirectinputofimagestogeneratelyrics,creativetexts,etc.,withstylevariations,onceagainshowcasingtheimpactofgenerativeAI.OnNovember7,2023,atthefirst-everOpenAIDevDay,OpenAICEOAltmanshowcasedGPT-4Turbototheworld.AsthelatestversionofGPT,ithasbeenupdatedinareassuchasdataquality,imageprocessing,andspeechconversion,bringingdevelopersandusers

morepossibilitiesandopportunities.

So,whatareChatGPTandGPT?Whatdevelopmentjourneyhavetheyundergone?Andhowshouldtheybeunderstoodandapplied?ThischapterwillstartwithanexplorationofGPTlargemodels,introducingtheirbasicconcepts,developmenthistory,andcurrentresearchstatustoprovidereaderswitha

comprehensiveandin-depthunderstandingofGPT.

1.1.BasicConceptsofGPT

1.1.1GenerativePre-trainedTransformer

GPTstandsforGenerativePre-trainedTransformer,originatingfromthefieldsofdeeplearningandnaturallanguageprocessing(NLP).Overthepastfewyears,withtheadvancementofcomputingpowerandtheemergenceofbigdata,significantbreakthroughshavebeenmadeinthefieldofNLP.GPT,asanintegrationofaseries

ofNLPtechnologies,emergedinsuchacontext,asshowninFigure1-1.

G:Generative.ThisindicatesthatGPThastheabilitytospontaneouslygenerate

content.

P:Pre-trained.ThisindicatesthatGPThasundergonepre-trainingandisready

forimmediateuse.

9/92

T:Transformer.ThisindicatesthatGPTisbasedontheTransformerarchitecture

forlanguagemodeling.

Figure1-1MeaningofGPT

In2017,theGoogleteamfirstproposedtheTransformermodelbasedontheSelf-AttentionMechanism(SAM)andappliedittoNLP[1].OpenAIappliedthistechnologyandreleasedtheearliestgenerationoflargemodels,GPT-1,in2018.Sincethen,theparametersizeofeachgenerationofGPTmodelshasgrownexplosively.TheparametersizeofGPT-2,releasedinFebruary2019,was1.5billion,whileGPT-3,

releasedinMay2020,directlyreached175billion.

ThemeteoricriseofChatGPTwasnotbychance.Itistheresultoftheeffortsofmanypeopleandalongperiodofevolution.TounderstandthedevelopmentofGPT,

oneshouldfirstgrasptheconceptoflargemodelsandTransformerarchitecture.

1.1.2LargeModel

Generally,beforeChatGPT,theAImodelsthatreceivedpublicattentionweremainlyusedforsingletasks.Forexample,“AlphaGo”,whichignitedtheentireAImarketandprompteditsexplosivedevelopment,defeatedGoworldchampionLeeSedolinthe“Manvs.Machine”matchin2016,basedonglobalGogamerecords.However,fundamentally,theseAIdatamodels,whichfocusonspecifictasks,can

onlybecalled“smallmodels”comparedtoChatGPT.

Largemodelsrefertomachinelearningmodelswithhugeparameterscalesandcomplexity.ThetermusuallyreferstoLargeLanguageModels(LLMs).AlanguagemodelisanAImodelthat,aftertraining,canunderstandandgeneratehumanlanguage,and“large”meansthatthemodel’sparametersareverylargerelativeto

“smallmodels.”

AsshowninFigure1-2,thisevolutionarytreetracesthedevelopmenthistoryof

10/92

largemodelsinrecentyears,highlightingsomeofthemostwell-knownmodels,withmodelsonthesamebranchbeingmorecloselyrelated[2].Solidsquaresrepresentopen-sourcemodels,whilehollowsquaresrepresentclosed-sourcemodels.Non-Transformermodelsareshowningray,andamongTransformer-basedmodels,Encodermodelsareinthepinkbranch,Decodermodelsareinthebluebranch,and

Encoder-Decodermodelsareinthegreenbranch.

Figure1-2EvolutionaryTreeofLargeModels

Basedonthisevolutionarytreediagram,wecanconcludethatDecoder-onlymodelsaregraduallybecomingthedominantmodelsinLLMdevelopment,andOpenAIcontinuestomaintainitsleadingpositioninLLM.Metahasmadeoutstandingcontributionstoopen-sourceandLLMresearch,butthereisatrendtowardsclosed-sourcedevelopmentafterthelaunchofGPT-3.Inaddition,manycompaniesandinstitutionsarestillactivelyexploringEncoder-Decodermodels,such

asGoogle.

Currently,majorinstitutionsabroadthatreleaselargemodelsincludeOpenAI,Anthropic,Google,andMeta,withmodelparameterscalesmainlyinthetensandhundredsofbillions.Uptonow,thetopGPTlargemodelsabroadincludeChatGPT,

Claude,Bard,andLlama.Amongthem,afterGooglereleasedthelatestnative

11/92

multimodallargemodel–Gemini,BardwasofficiallyrenamedGemini.

Inthisgloballycompetitivearena,Chinaisalsokeepingpace,developingmanylargemodels,includingTencent’s“Hybrid,”Alibaba’s“TongyiQianwen,”Huawei’s“Pangu,”andChinaMobile’s“Jiutian”series.DatashowsthatasofOctober2023,thereareatotalof254domesticcompanies,universities,andresearchinstituteswithlargemodelsofover1billionparameters,indicatingthatthe“battleofthehundredmodels”istransitioningfromthepreviousstageof“beingborn”toanewstageof“beingused.”Figure1-3showssomeofthelargemodelsdevelopedbydomesticand

foreigncompaniescurrently.

Figure1-3VariousTypesofLargeModels

1.1.3TransformerArchitecture

TheTransformerarchitectureisacrucialfoundationofGPT,whichisaneuralnetworkarchitecturebasedontheSAMandwidelyusedinlargemodelsinthefieldofNLP.ItscorecomponentsaretheEncoderandDecoder.TheEncoderencodesinputtextintoaseriesofvectors,whiletheDecoderdecodesthesevectorsonebyoneintooutputtext.BeforetheintroductionofTransformer,themainstreammodelsintheNLPfieldwereRecurrentNeuralNetworks(RNNs),whichusedrecursionand

convolutionalneuralnetworksforlanguagesequencetransformation.

InJune2017,theGoogleBrainteampublishedapapertitledAttentionisAllYouNeedatthetopAIconferenceNeurIPS,proposinganewnetworkarchitecturecalledTransformer.ItisentirelybasedontheSAM,abandoningrecursionandconvolution.Afteronly12hoursoftrainingoneightP100GraphicsProcessingUnits(GPUs),

Transformerachievedhighertranslationquality[1],showcasingexcellentparallelism

12/92

andbecomingthemostadvancedLLMatthetime.

Figure1-4illustratesthenetworkstructureoftheTransformer.ItconsistsofaseriesofEncodersandDecoders,eachcomprisingmulti-headattentionlayersandall-inclusiveconnectedfeedforwardnetworks.GPT,similartotheDecoderpartof

Transformer,isanautoregressivemodel.

Figure1-4TransformerNetworkStructureDiagram

ThecorecomponentintheTransformeristhemulti-headattentionmechanismmodule,asshowninFigure1-5.Itrequiresthreespecifiedinputs:Q(Query),K(Key),andV(Value).Then,itcalculatesthesimilaritybetweeneachpairofQandKand

weightseachVbasedonthesimilaritytoobtaintheattentioncalculationresult.

13/92

Figure1-5Multi-HeadAttentionMechanismModule

Themulti-headattentionmechanismdoesnotcalculateattentiononlyoncebutdividestheinputintosmallerblocksandthencalculatesthescaleddot-productattentioninparalleloneachsubspace.Thisdesignallowseachattentionmechanismtooptimizedifferentfeaturepartsofeachword,balancingthebiasesthatmayarisefromthesameattentionmechanismandenablingthemodeltocapturesemanticinformationatdifferentlevels,therebyenhancingthemodel’sexpressivepowerand

improvingitseffectiveness.

1.2.DevelopmentHistoryofGPT

14/92

Figure1-6DevelopmentHistoryofGPT

ThedevelopmenthistoryofGPTcanbedividedintotwostages.BeforeChatGPT,theemphasiswasoncontinuouslyincreasingthebasicscaleoflargemodelsandenhancingnewcapabilities.ChatGPTandGPT-4,ontheotherhand,focusmoreonreinforcementlearningfromhumanfeedbacktounderstandhuman

intentandprovidebetterservices,asshowninFigure1-6.

①June2018:OpenAIpublishedthepaperImprovingLanguageUnderstandingbyGenerativePre-trainingandofficiallyreleasedGPT-1[3].

.Basicapproach:Generativepre-training(unsupervised)+downstreamtask

fine-tuning(supervised).

.BasedonaunidirectionalTransformerlanguagemodelwithadecoder

structure,consistingof12layers.

.117millionparameters,5GBtrainingdata,relativelylimitedmodelsizeandcapabilities.

.Contextwindow:512tokens.

②February2019:OpenAIpublishedthepaperLanguageModelsareUnsupervisedMultitaskLearners,proposingthatlanguagemodelsareunsupervisedmultitasklearners,andGPT-2wasborn[4].

.Basicapproach:Removingsupervision,retainingonlyunsupervisedlearning.

.48-layerTransformerstructure.

15/92

.1.5billionparameters,andthetrainingdatavolumeincreasedto40GB.

.Contextwindow:1024tokens.

③May2020:OpenAIpublishedthepaperLanguageModelsareFew-Shot

LearnersandintroducedtheGPT-3model[5].

.Basicapproach:Unsupervisedlearning+in-contextlearning.

.96-layermulti-headTransformer.

.Thenumberofparametersincreasedto175billion,trainedon45TBoftextdata.

.Contextwindow:2048tokens.

④March2022:OpenAIonceagainpublishedthepaperTrainingLanguageModelstoFollowInstructionswithHumanFeedback,introducingReinforcementLearningfromHumanFeedback(RLHF),andlaunchedtheInstructGPTmodel[6].

.Basicapproach:RLHF+fine-tuningtraining.

.Enhancedhumanadjustmentofmodeloutput.

.Resultsrankedinamoreunderstandablemanner.

ChatGPTisaderivativeofInstructGPT,andthetwohavethesamemodelstructureandtrainingmethod.Theonlydifferenceisthewaytheycollectdata.

ChatGPTfocusesmoreoninteractionintheformofdialogue.

⑤March2023:OpenAIreleasedthemultimodalpre-trainedlargemodelGPT-4,

onceagainundergoingsignificantupgrades.

.Basicapproach:Multimodal.

.Contextwindow:8195tokens.

.1.8trillionparameters,13trilliontokentrainingdata.

.Powerfulimagerecognitioncapabilities.

AlthoughthecurrentcapabilitiesofGPT-4inreal-worldscenariosmaynotmatchthoseofhumans,ithasdemonstratedsignificantlysuperiorabilitiesinvariousprofessionalandacademicexams.EvenSATscores(whichcanbeunderstoodasscoresfortheU.S.collegeadmissionstest)ofGPT-4havesurpassedthoseof90%oftesttakers,reachingthelevelrequiredforadmissiontotopuniversitiessuchas

HarvardandStanford.

1.3.CurrentResearchStatusofGPT

OnOctober12,2023,theanalysiscompanystateof.aireleasedtheStateofAI

Report2023.ThereportpointedoutthatOpenAI’sGPT-4remainsthemostpowerful

16/92

LLMglobally.GenerativeAIhaspropelledadvancementsinlifesciencesandhasbeenasaviorfortheventurecapitalindustry[7].Largemodelscontinuetoachievetechnologicalbreakthroughs,especiallyinthefieldoflifesciences,making

significantprogressinmolecularbiologyanddrugdiscovery.

OnDecember14,2023,Natureannouncedtenpeoplein2023.Notably,thechatbotChatGPT,duetoitsdominanceofvariousnewsheadlinesin2023andprofoundimpactonthescientificcommunityandsocietyatlarge,wasincludedasthe11th“non-humanmember”onthelist,recognizingthesignificantchangesbroughtaboutbygenerativeAItoscientificdevelopmentandprogress.Currently,bothdomesticallyandabroad,researchonGPTlargemodelscontinuestodeepen,withmanyinstitutionsstartingtodeveloptheirownlargemodels,andtheapplicationscenariosarebecomingincreasinglydiverse.LargemodelsrepresentedbyChatGPT

haveofficiallyusheredintheeraofAI2.0.

1.3.1ForeinResearchStatus

1UnitedStates

IntheUnitedStates,startupslikeOpenAIandAnthropic,alongwithtechgiantssuchasMicrosoftandGoogle,areleadingtherapiddevelopmentoflargemodels.Majorcompaniesarecontinuallyenhancingtheircompetitiveness.Googleinvested$300millioninAnthropictocounterthethreatposedbyChatGPT,joiningreinforcementlearningfromartificialintelligencefeedback(RLAIF)toreducehumanfeedback.InDecember2022,GooglepublishedapapertitledConstitutionalAI:HarmlessnessfromAIFeedback,introducingtheAImodelClaude.Buzzfeed,aUSnewmediagiant,sawitsstockpricetripleintwodaysafterannouncingplanstouseChatGPTtoassistcontentcreation.Microsoft,asthemaininvestorinOpenAI,isalsousingChatGPTtoenhanceitsproductcompetitivenessandsupplementits

professionalknowledgeandmathematicalshortcomings.

2UnitedKingdom

InApril2023,theUKgovernmentannouncedthatitwouldprovide£100millionininitialfundingtotheteamresponsibleforbuildingtheUKversionofthefoundationalAImodeltoacceleratethedevelopmentofAItechnologyintheUK.TheUKgovernmentstatedthatthisinvestmentwouldbeusedtofundnewteamsjointlybuiltbythegovernmentandtheindustrytoensuretheUK’sAI“sovereign

capabilities.”Thegoalofthisinitiativeistopromotetheapplicationofsafeand

17/92

reliablefoundationalmodelsandstrivetobuildtheUKintoatechnological“superpower”by2030.Inaddition,inresponsetothecontroversyovertheapplicationoflargemodelssuchasGPTinAIethics,theUKhasalsoissuedawhitepaperonregulatorymeasuresandstatedthatregulatoryagencieswillnextissueguidelinesandriskassessmenttemplatestovariousorganizations.Othertoolsandresourceswillbe

usedtoformulatespecificimplementationprincipleswithintheindustry.

③Europe

InFinland,FlowriteisanAI-basedwritingtoolthatcangenerateemails,messages,andothercontentbyinputtingkeywords.IntheNetherlands,theomnichannelcommunicationplatformMessageBirdlauncheditsownAIplatformMessageBirdAI,whichcanunderstandthemeaningofcustomerinformationandrespondaccordingly.BotharebasedonGPT-3.Germanyisalsoconstantlycatchingupinthedevelopmentoflargemodels.Forexample,onMarch7,2023,GooglelaunchedthemultimodallargemodelPaLM-E,jointlydevelopedbytheTechnical

UniversityofBerlinandGoogle.

InFebruary2024,theEuropeangenerativeAIun

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论