版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1/92
ExecutiveSummary
Drivenbythejointeffortofkeytechnologiessuchasbigdataandcloudcomputing,asizablenumberofthegenerativepre-trainedtransformer(GPT)largemodels,representedbyChatGPT,haveemerged,showinghighlycreativecontentgenerationcapabilitiesandprovidinghighlyintelligenthuman-computerinteractionexperience.Foralongtime,therehavebeenmanytechnicalproblemsincommunicationthataredifficulttomodelaccuratelyorsolveefficientlyusingtraditionalmethods.Meanwhile,GPTdemonstratesthepotentialtoimprovetheperformanceofinformationcommunicationservicesandintelligentautonomousnetworks.Inaddition,therapiddevelopmentandbroadapplicationsofGPTalsoneedtobesupportedbyacommunicationnetworkwithlargebandwidth,lowlatency,and
highreliability.
Therefore,fromtheperspectiveofcommunicationpractitioners,thiswhitepaperexplorestheinterrelationshipbetweenGPTandcommunication.Firstly,Chapter1sketchestheconcept,developmentprocess,andresearchstatusofGPTlargemodels.Secondly,Chapter2discussesthenewapplicationsofGPTinthecommunicationindustry,andthepositionofGPTinnetworkintelligentautonomy.Thirdly,Chapter3exploreshowthecommunicationnetworksenablethebroadapplicationsofGPT,andgivesatypicalideaoffuturenetworkdesign.Moreover,Chapter4analyzestheprocessofGPTandcommunicationfromindependentevolutiontocollaborativedevelopment,aswellasapplicationsof“6G+GPT”empoweringthedigitaltransformationofindustries.Inaddition,Chapter5pointsoutthefivemostobviousproblemsandchallengesintheintegrationprocessof“GPT+Communication”andprovidessomesolutions.Subsequently,Chapter6putsforwardseveralsuggestionsonhowGPTandthecommunicationindustrycandeveloptogether,aswellasthe
prospectsforthefuture.Finally,Chapter7concludesthiswhitepaper.
2/92
Contents
ExecutiveSummary 1
0Preface 4
1.GPTLeadstheTideofArtificialIntelligenceDevelopment 8
1.1.BasicConceptsofGPT 8
1.1.1GenerativePre-trainedTransformer 8
1.1.2LargeModel 9
1.1.3TransformerArchitecture 11
1.2.DevelopmentHistoryofGPT 13
1.3.CurrentResearchStatusofGPT 15
1.3.1ForeinResearchStatus 16
1.3.2DomesticResearchStatus 18
1.3.3InternationalOrganizations 19
2.GPTEmpowerstheCommunicationIndustry 20
2.1.GPTStimulatesNewApplicationsandReformsinCommunication 20
2.1.1IntelligentCustomerService 22
2.1.2AutomationSimulation 23
2.1.3EnhancedSemanticCommunication 24
2.1.4ReshapingtheFieldofChipDesign 25
2.2.GPTPromotesIntelligentAutonomyinCommunicationNetworks 26
2.2.1GPTReshapesNetworkPlanning 28
2.2.2GPTEnhancesSlicingDeployment 29
2.2.3GPTSimplifiesNetworkOperationsandMaintenance 30
2.2.4GPTAcceleratesNetworkOptimization 32
3.CommunicationNetworksEnableGPTUbiquitousApplications 35
3.1CommunicationNetworksGuaranteetheLandingofGPTApplications 35
3.2FutureNetworkTechnologySupportsGPTApplications 38
3.2.1TypicalApproachestoFutureNetworkDesign 38
3.2.26GNetworkwithNativeSupportforGPTApplications 39
3.3NewNetworkArchitectureSupportsGPTCapabilitySinking 41
3.3.1AdaptiveSlicing 41
3.3.2DistributedLearning 43
3.3.3EdgeIntelligence 43
4.CollaborativeDevelopmentofGPTandCommunication 46
4.1.GPTandCommunicationfromIndependentEvolutiontoCloseIntegration 46
4.1.1TrendsintheIntegrationofGPTandCommunication 46
4.1.2IntegrationofGPTand5GNetworks 47
4.2.IntegrationandDevelopmentofGPTwith6GCommunicationNetworks 48
4.2.1GPTSupportsMassiveDataProcessing 49
4.2.2GPTPromotesNetworkSelf-Service 50
3/92
4.2.3GPTAssistsinNetworkResourceOrchestration 50
4.2.4GPTConstructsNetworkEndogenousSecurity 50
4.3.“6G+GPT”EmpowersIndustryDigitalTransformation 51
4.3.1“6G+GPT”EmpowersSmartIndustry 52
4.3.2“6G+GPT”EmpowersSmartHealthcare 53
4.3.3“6G+GPT”EmpowersSmartTransportation 53
4.3.4“6G+GPT”EmpowersSmartAgriculture 54
4.3.5“6G+GPT”EmpowersSmartHome 55
4.3.6“6G+GPT”EmpowersDigitalEntertainment 55
5.ProblemsFacedbytheDevelopmentof“GPT+Communication”Integration56
5.1.ScarcityofHigh-QualityTrainingDatainCommunicationLeadstoPoorAccuracyand
GeneralizationofSpecializedModels
5
7
5.2.InsufficientOn-DeviceComputingPowerandHardwareResourcesPoseChallengesto
LightweightDeploymentofLargeModels
6
0
5.3.DifficultiesinCloud-Edge-TerminalHeterogeneousNetworkCollaborationLeadtoPoor
StabilityPerformanceofLargeModels
6
2
5.4.ServerInterconnectionBandwidthBottlenecksResultinLongTrainingTimeandLow
InferenceEfficiency
6
5
5.5.LaggingLegalRegulationsRelatedtoLargeModelsResultinHighRisksofSecurity,
Privacy,andEthicalIssues
6
7
6.DevelopmentRecommendationsandFutureProspects 71
6.1.DevelopmentRecommendations 71
6.1.1AcceleratingtheConstructionofAIComputingPowerandProvidingInfrastructure
Support
7
1
6.1.2StrengtheningJointTrainingofSchoolsandEnterprisestoFilltheGapin
InnovativeTalents
7
4
6.1.3AcceleratingtheFormulationofRelevantPoliciesandEstablishingPlatformsto
GuideDevelopment
7
6
6.2.FutureProspects 78
6.2.1BreakthroughsinCoreTechnologiesandSignificantEnhancementofKey
Capabilities
7
8
6.2.2ContinuousImprovementinSystemConstructionandRapidDevelopmentofthe
DigitalEconomy
8
0
6.2.3ExpansionofApplicationScenarios,GradualIntegrationandSymbiosis 82
7.Conclusion 84
References 85
Abbreviations 90
Acknowledgments 92
4/92
0Preface
Inrecentyears,asArtificialIntelligence(AI)technologyhascontinuedtoadvance,particularlyintheareasofreinforcementlearning,largemodels,andgenerativecontent,variousindustrieshavebeenactivelyexploringitsapplications.AttheendofNovember2022,OpenAIreleasedtherapidlypopularizedchatbotChatGPT,whichpossessesastonishingnaturallanguageunderstandingandgenerationcapabilities,attractingwidespreadattentionfromsociety.Subsequently,inMarch2023,thelaunchoftheupgradedversionGPT-4multimodallargemodelreignitedenthusiasmforgenerativeAI,leadingtotheemergenceofnumerouslargemodelsin
quicksuccession.
Sincetheinceptionoftext-basedconversationalinteractions,GPThasprofoundlyimpactedpeople’sproductionandliveswithinafewshortyears,bringingaboutsignificantchanges.Manypeoplebelievethatitwillcontinuetobringdisruptivechanges.BillGatespointedoutthatlargemodelsrepresentthemostrevolutionarytechnologicaladvancementinover40years;NVIDIACEOJensenHuanglikenedtheemergenceoflargemodelstothe“iPhonemoment”ofAI;BaiduCEORobinLiproposedthatlargemodelsarepreparedtochangetheworldatthe2023ZhongguancunForum.FromtheripplescausedbyChatGPTtotheglobalwaveitunleashed,GPTlargemodelshavebecomeoneofthemostdiscussedtopicstoday,signalingacrucialturningpointinthedevelopmentofgenerativeAI;theyear2023
willalsoundoubtedlyleaveasignificantmarkinthehistoryofAIdevelopment.
Asanindustryfacilitatinginformationexchangeandtransmissionamonghumans,nature,andmachines,thecommunicationindustryiscloselyintertwinedwiththedevelopmentoflargemodeltechnology.Thecommunicationindustryitselfhasahighdegreeofdigitalizationandneedstohandlecomplexdata.TheintroductionofGPTcanstreamlineasignificantamountofwork,bringingaboutsignificantcapacityenhancementsforcommunicationoperators,particularlyintherealmsofnetworkoperationsandmaintenance(O&M)andservicedelivery,makingthemmoreintelligent.Intheeraoflargemodels,withtheadvancementofGPTtechnology,thedemandforcomputingpower,data,andalgorithmswillexperienceexplosivegrowth,requiringcommunicationinfrastructuretoprovidesupport.Inthefuture,howGPT
empowersthecommunicationindustryandhowthecommunicationindustrysupports
5/92
GPTarequestionsthateverycommunicationprofessionalshouldearnestly
contemplate.
Therefore,thiswhitepaperisbasedonthedevelopmenthistoryandlatestresearchadvancementsofGPTlargemodels.Ontheonehand,itelaboratesontheinnovativeapplicationsofGPTwithinthecommunicationindustryinspecificscenarios.Ontheotherhand,itinvestigateshowfuturecommunicationnetworksprovidenativesupportforGPTintermsofarchitectureandkeytechnologies.Subsequently,combiningGPTwithcommunication,itproposesaroadmapforthedigitalandintelligenttransformationofkeyindustriesthroughtheircollaborativedevelopment,whilealsopointingouttheproblemsandchallengesintheintegrationanddevelopmentprocess.Inresponsetotheseissues,correspondingdevelopmentrecommendationsandprospectsareprovided.Finally,thewholecontentofthiswhitepaperissummarized.Thecompletechapterstructureofthiswhitepaperisillustrated
inFigure0-1below.
6/92
Figure0-1WhitePaperChapterStructureDiagram
ThiswhitepaperwasjointlyorganizedandauthoredbytheBeijingInstituteofTechnology,withparticipationfrom18entities,includingthethreemajortelecomoperators(ChinaMobile,ChinaUnicom,andChinaTelecom),seventop-tieruniversities,threerenownedenterprises,andfiveleadingresearchinstitutesintheindustry.Spanningovereightmonths,theprocessinvolvedthein-depthparticipationofover50expertsandscholars,fromconductingresearchandtrackingthecutting-edgestatusofGPTlargemodelstoexploringtherelationshipbetweenGPTandcommunication,conceptualizingtheoutlineofthewhitepaper,arrangingspecificchaptercontent,andassigningwritingtasks.Itunderwentmorethantwentyroundsofdiscussionsandrevisionsbeforereachingitscompletion.Duringthisperiod,some
participatingentitiesalsosuccessfullycollaboratedtoapplyforaninternational
7/92
cooperationprojectfromtheMinistryofScienceandTechnologyofthePeople’sRepublicofChina,titled“ResearchonKeyTechnologiesofIntegratedMultidimensionalIntelligentOrchestrationinCloudComputingNetworksBasedon
LargeModels,”therebybettersupportingthecompletionofthiswhitepaper.
WebelievethatAItechnologyisstillinarapidlydevelopingstage,andtheintegrationandmutualsupportbetweenGPTlargemodelsandcommunicationnetworkscancontinuallyexpandinnovativeapplicationscenariosandimproveecosystemdevelopment,thusjointlypromotingtechnologicalprogressandthe
developmentofvariousindustries.
8/92
1.GPTLeadstheTideofArtificialIntelligenceDevelopment
WiththeadvancementofAIanddeeplearningtechnologies,theconceptof“largemodels”hascomeintofocus,withChatGPTbeingthemostnotable.OnNovember30,2022,OpenAIofficiallyreleasedtheAIchatbotChatGPT,whichrepresentsArtificialIntelligenceGeneratedContent(AIGC)inthefieldofnaturallanguage.Itspowerfulcapabilitieshavechangedthewaymanypeopleworkandlive,sparkinganewwaveofAIgloballyandattractingwideattentionfrombothindustryandacademia.OnMarch14,2023,theofficiallyreleasedGPT-4underwentfurtherupgrades,significantlyrelaxingtextinputrestrictions,improvingansweraccuracy,andevenenablingdirectinputofimagestogeneratelyrics,creativetexts,etc.,withstylevariations,onceagainshowcasingtheimpactofgenerativeAI.OnNovember7,2023,atthefirst-everOpenAIDevDay,OpenAICEOAltmanshowcasedGPT-4Turbototheworld.AsthelatestversionofGPT,ithasbeenupdatedinareassuchasdataquality,imageprocessing,andspeechconversion,bringingdevelopersandusers
morepossibilitiesandopportunities.
So,whatareChatGPTandGPT?Whatdevelopmentjourneyhavetheyundergone?Andhowshouldtheybeunderstoodandapplied?ThischapterwillstartwithanexplorationofGPTlargemodels,introducingtheirbasicconcepts,developmenthistory,andcurrentresearchstatustoprovidereaderswitha
comprehensiveandin-depthunderstandingofGPT.
1.1.BasicConceptsofGPT
1.1.1GenerativePre-trainedTransformer
GPTstandsforGenerativePre-trainedTransformer,originatingfromthefieldsofdeeplearningandnaturallanguageprocessing(NLP).Overthepastfewyears,withtheadvancementofcomputingpowerandtheemergenceofbigdata,significantbreakthroughshavebeenmadeinthefieldofNLP.GPT,asanintegrationofaseries
ofNLPtechnologies,emergedinsuchacontext,asshowninFigure1-1.
G:Generative.ThisindicatesthatGPThastheabilitytospontaneouslygenerate
content.
P:Pre-trained.ThisindicatesthatGPThasundergonepre-trainingandisready
forimmediateuse.
9/92
T:Transformer.ThisindicatesthatGPTisbasedontheTransformerarchitecture
forlanguagemodeling.
Figure1-1MeaningofGPT
In2017,theGoogleteamfirstproposedtheTransformermodelbasedontheSelf-AttentionMechanism(SAM)andappliedittoNLP[1].OpenAIappliedthistechnologyandreleasedtheearliestgenerationoflargemodels,GPT-1,in2018.Sincethen,theparametersizeofeachgenerationofGPTmodelshasgrownexplosively.TheparametersizeofGPT-2,releasedinFebruary2019,was1.5billion,whileGPT-3,
releasedinMay2020,directlyreached175billion.
ThemeteoricriseofChatGPTwasnotbychance.Itistheresultoftheeffortsofmanypeopleandalongperiodofevolution.TounderstandthedevelopmentofGPT,
oneshouldfirstgrasptheconceptoflargemodelsandTransformerarchitecture.
1.1.2LargeModel
Generally,beforeChatGPT,theAImodelsthatreceivedpublicattentionweremainlyusedforsingletasks.Forexample,“AlphaGo”,whichignitedtheentireAImarketandprompteditsexplosivedevelopment,defeatedGoworldchampionLeeSedolinthe“Manvs.Machine”matchin2016,basedonglobalGogamerecords.However,fundamentally,theseAIdatamodels,whichfocusonspecifictasks,can
onlybecalled“smallmodels”comparedtoChatGPT.
Largemodelsrefertomachinelearningmodelswithhugeparameterscalesandcomplexity.ThetermusuallyreferstoLargeLanguageModels(LLMs).AlanguagemodelisanAImodelthat,aftertraining,canunderstandandgeneratehumanlanguage,and“large”meansthatthemodel’sparametersareverylargerelativeto
“smallmodels.”
AsshowninFigure1-2,thisevolutionarytreetracesthedevelopmenthistoryof
10/92
largemodelsinrecentyears,highlightingsomeofthemostwell-knownmodels,withmodelsonthesamebranchbeingmorecloselyrelated[2].Solidsquaresrepresentopen-sourcemodels,whilehollowsquaresrepresentclosed-sourcemodels.Non-Transformermodelsareshowningray,andamongTransformer-basedmodels,Encodermodelsareinthepinkbranch,Decodermodelsareinthebluebranch,and
Encoder-Decodermodelsareinthegreenbranch.
Figure1-2EvolutionaryTreeofLargeModels
Basedonthisevolutionarytreediagram,wecanconcludethatDecoder-onlymodelsaregraduallybecomingthedominantmodelsinLLMdevelopment,andOpenAIcontinuestomaintainitsleadingpositioninLLM.Metahasmadeoutstandingcontributionstoopen-sourceandLLMresearch,butthereisatrendtowardsclosed-sourcedevelopmentafterthelaunchofGPT-3.Inaddition,manycompaniesandinstitutionsarestillactivelyexploringEncoder-Decodermodels,such
asGoogle.
Currently,majorinstitutionsabroadthatreleaselargemodelsincludeOpenAI,Anthropic,Google,andMeta,withmodelparameterscalesmainlyinthetensandhundredsofbillions.Uptonow,thetopGPTlargemodelsabroadincludeChatGPT,
Claude,Bard,andLlama.Amongthem,afterGooglereleasedthelatestnative
11/92
multimodallargemodel–Gemini,BardwasofficiallyrenamedGemini.
Inthisgloballycompetitivearena,Chinaisalsokeepingpace,developingmanylargemodels,includingTencent’s“Hybrid,”Alibaba’s“TongyiQianwen,”Huawei’s“Pangu,”andChinaMobile’s“Jiutian”series.DatashowsthatasofOctober2023,thereareatotalof254domesticcompanies,universities,andresearchinstituteswithlargemodelsofover1billionparameters,indicatingthatthe“battleofthehundredmodels”istransitioningfromthepreviousstageof“beingborn”toanewstageof“beingused.”Figure1-3showssomeofthelargemodelsdevelopedbydomesticand
foreigncompaniescurrently.
Figure1-3VariousTypesofLargeModels
1.1.3TransformerArchitecture
TheTransformerarchitectureisacrucialfoundationofGPT,whichisaneuralnetworkarchitecturebasedontheSAMandwidelyusedinlargemodelsinthefieldofNLP.ItscorecomponentsaretheEncoderandDecoder.TheEncoderencodesinputtextintoaseriesofvectors,whiletheDecoderdecodesthesevectorsonebyoneintooutputtext.BeforetheintroductionofTransformer,themainstreammodelsintheNLPfieldwereRecurrentNeuralNetworks(RNNs),whichusedrecursionand
convolutionalneuralnetworksforlanguagesequencetransformation.
InJune2017,theGoogleBrainteampublishedapapertitledAttentionisAllYouNeedatthetopAIconferenceNeurIPS,proposinganewnetworkarchitecturecalledTransformer.ItisentirelybasedontheSAM,abandoningrecursionandconvolution.Afteronly12hoursoftrainingoneightP100GraphicsProcessingUnits(GPUs),
Transformerachievedhighertranslationquality[1],showcasingexcellentparallelism
12/92
andbecomingthemostadvancedLLMatthetime.
Figure1-4illustratesthenetworkstructureoftheTransformer.ItconsistsofaseriesofEncodersandDecoders,eachcomprisingmulti-headattentionlayersandall-inclusiveconnectedfeedforwardnetworks.GPT,similartotheDecoderpartof
Transformer,isanautoregressivemodel.
Figure1-4TransformerNetworkStructureDiagram
ThecorecomponentintheTransformeristhemulti-headattentionmechanismmodule,asshowninFigure1-5.Itrequiresthreespecifiedinputs:Q(Query),K(Key),andV(Value).Then,itcalculatesthesimilaritybetweeneachpairofQandKand
weightseachVbasedonthesimilaritytoobtaintheattentioncalculationresult.
13/92
Figure1-5Multi-HeadAttentionMechanismModule
Themulti-headattentionmechanismdoesnotcalculateattentiononlyoncebutdividestheinputintosmallerblocksandthencalculatesthescaleddot-productattentioninparalleloneachsubspace.Thisdesignallowseachattentionmechanismtooptimizedifferentfeaturepartsofeachword,balancingthebiasesthatmayarisefromthesameattentionmechanismandenablingthemodeltocapturesemanticinformationatdifferentlevels,therebyenhancingthemodel’sexpressivepowerand
improvingitseffectiveness.
1.2.DevelopmentHistoryofGPT
14/92
Figure1-6DevelopmentHistoryofGPT
ThedevelopmenthistoryofGPTcanbedividedintotwostages.BeforeChatGPT,theemphasiswasoncontinuouslyincreasingthebasicscaleoflargemodelsandenhancingnewcapabilities.ChatGPTandGPT-4,ontheotherhand,focusmoreonreinforcementlearningfromhumanfeedbacktounderstandhuman
intentandprovidebetterservices,asshowninFigure1-6.
①June2018:OpenAIpublishedthepaperImprovingLanguageUnderstandingbyGenerativePre-trainingandofficiallyreleasedGPT-1[3].
.Basicapproach:Generativepre-training(unsupervised)+downstreamtask
fine-tuning(supervised).
.BasedonaunidirectionalTransformerlanguagemodelwithadecoder
structure,consistingof12layers.
.117millionparameters,5GBtrainingdata,relativelylimitedmodelsizeandcapabilities.
.Contextwindow:512tokens.
②February2019:OpenAIpublishedthepaperLanguageModelsareUnsupervisedMultitaskLearners,proposingthatlanguagemodelsareunsupervisedmultitasklearners,andGPT-2wasborn[4].
.Basicapproach:Removingsupervision,retainingonlyunsupervisedlearning.
.48-layerTransformerstructure.
15/92
.1.5billionparameters,andthetrainingdatavolumeincreasedto40GB.
.Contextwindow:1024tokens.
③May2020:OpenAIpublishedthepaperLanguageModelsareFew-Shot
LearnersandintroducedtheGPT-3model[5].
.Basicapproach:Unsupervisedlearning+in-contextlearning.
.96-layermulti-headTransformer.
.Thenumberofparametersincreasedto175billion,trainedon45TBoftextdata.
.Contextwindow:2048tokens.
④March2022:OpenAIonceagainpublishedthepaperTrainingLanguageModelstoFollowInstructionswithHumanFeedback,introducingReinforcementLearningfromHumanFeedback(RLHF),andlaunchedtheInstructGPTmodel[6].
.Basicapproach:RLHF+fine-tuningtraining.
.Enhancedhumanadjustmentofmodeloutput.
.Resultsrankedinamoreunderstandablemanner.
ChatGPTisaderivativeofInstructGPT,andthetwohavethesamemodelstructureandtrainingmethod.Theonlydifferenceisthewaytheycollectdata.
ChatGPTfocusesmoreoninteractionintheformofdialogue.
⑤March2023:OpenAIreleasedthemultimodalpre-trainedlargemodelGPT-4,
onceagainundergoingsignificantupgrades.
.Basicapproach:Multimodal.
.Contextwindow:8195tokens.
.1.8trillionparameters,13trilliontokentrainingdata.
.Powerfulimagerecognitioncapabilities.
AlthoughthecurrentcapabilitiesofGPT-4inreal-worldscenariosmaynotmatchthoseofhumans,ithasdemonstratedsignificantlysuperiorabilitiesinvariousprofessionalandacademicexams.EvenSATscores(whichcanbeunderstoodasscoresfortheU.S.collegeadmissionstest)ofGPT-4havesurpassedthoseof90%oftesttakers,reachingthelevelrequiredforadmissiontotopuniversitiessuchas
HarvardandStanford.
1.3.CurrentResearchStatusofGPT
OnOctober12,2023,theanalysiscompanystateof.aireleasedtheStateofAI
Report2023.ThereportpointedoutthatOpenAI’sGPT-4remainsthemostpowerful
16/92
LLMglobally.GenerativeAIhaspropelledadvancementsinlifesciencesandhasbeenasaviorfortheventurecapitalindustry[7].Largemodelscontinuetoachievetechnologicalbreakthroughs,especiallyinthefieldoflifesciences,making
significantprogressinmolecularbiologyanddrugdiscovery.
OnDecember14,2023,Natureannouncedtenpeoplein2023.Notably,thechatbotChatGPT,duetoitsdominanceofvariousnewsheadlinesin2023andprofoundimpactonthescientificcommunityandsocietyatlarge,wasincludedasthe11th“non-humanmember”onthelist,recognizingthesignificantchangesbroughtaboutbygenerativeAItoscientificdevelopmentandprogress.Currently,bothdomesticallyandabroad,researchonGPTlargemodelscontinuestodeepen,withmanyinstitutionsstartingtodeveloptheirownlargemodels,andtheapplicationscenariosarebecomingincreasinglydiverse.LargemodelsrepresentedbyChatGPT
haveofficiallyusheredintheeraofAI2.0.
1.3.1ForeinResearchStatus
1UnitedStates
IntheUnitedStates,startupslikeOpenAIandAnthropic,alongwithtechgiantssuchasMicrosoftandGoogle,areleadingtherapiddevelopmentoflargemodels.Majorcompaniesarecontinuallyenhancingtheircompetitiveness.Googleinvested$300millioninAnthropictocounterthethreatposedbyChatGPT,joiningreinforcementlearningfromartificialintelligencefeedback(RLAIF)toreducehumanfeedback.InDecember2022,GooglepublishedapapertitledConstitutionalAI:HarmlessnessfromAIFeedback,introducingtheAImodelClaude.Buzzfeed,aUSnewmediagiant,sawitsstockpricetripleintwodaysafterannouncingplanstouseChatGPTtoassistcontentcreation.Microsoft,asthemaininvestorinOpenAI,isalsousingChatGPTtoenhanceitsproductcompetitivenessandsupplementits
professionalknowledgeandmathematicalshortcomings.
2UnitedKingdom
InApril2023,theUKgovernmentannouncedthatitwouldprovide£100millionininitialfundingtotheteamresponsibleforbuildingtheUKversionofthefoundationalAImodeltoacceleratethedevelopmentofAItechnologyintheUK.TheUKgovernmentstatedthatthisinvestmentwouldbeusedtofundnewteamsjointlybuiltbythegovernmentandtheindustrytoensuretheUK’sAI“sovereign
capabilities.”Thegoalofthisinitiativeistopromotetheapplicationofsafeand
17/92
reliablefoundationalmodelsandstrivetobuildtheUKintoatechnological“superpower”by2030.Inaddition,inresponsetothecontroversyovertheapplicationoflargemodelssuchasGPTinAIethics,theUKhasalsoissuedawhitepaperonregulatorymeasuresandstatedthatregulatoryagencieswillnextissueguidelinesandriskassessmenttemplatestovariousorganizations.Othertoolsandresourceswillbe
usedtoformulatespecificimplementationprincipleswithintheindustry.
③Europe
InFinland,FlowriteisanAI-basedwritingtoolthatcangenerateemails,messages,andothercontentbyinputtingkeywords.IntheNetherlands,theomnichannelcommunicationplatformMessageBirdlauncheditsownAIplatformMessageBirdAI,whichcanunderstandthemeaningofcustomerinformationandrespondaccordingly.BotharebasedonGPT-3.Germanyisalsoconstantlycatchingupinthedevelopmentoflargemodels.Forexample,onMarch7,2023,GooglelaunchedthemultimodallargemodelPaLM-E,jointlydevelopedbytheTechnical
UniversityofBerlinandGoogle.
InFebruary2024,theEuropeangenerativeAIun
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国汽车铝合金装饰件行业投资前景及策略咨询研究报告
- 2024至2030年PU贴合面料项目投资价值分析报告
- 2024年面包粉改良剂项目可行性研究报告
- 2024至2030年中国V领T恤行业投资前景及策略咨询研究报告
- 2024至2030年中国OA系统数据监测研究报告
- 排水排污合同范本
- 租库房合同范本
- 2025届吉林省长春二中高一物理第一学期期末达标测试试题含解析
- 2025届吉林省长春市一五0中学物理高二第一学期期末质量跟踪监视模拟试题含解析
- 2025届江苏省南京市示范名校物理高二上期中经典模拟试题含解析
- 电动自行车火灾的勘查检验技术及案例分析
- 螺栓检测报告
- 碳排放介绍及相关计算方法
- 社团活动记录(足球)
- 腐蚀测量及技术
- 家庭医生签约服务在实施老年高血压患者社区护理管理中应用
- 氯化钠与氯化铵分离解析
- 关注青少年心理健康孩子的人格培养与家庭教育
- 个案面谈技巧(2016.6.15)
- 高中理科教学仪器配备标准[共121页]
- 屋面平瓦(挂瓦条铺瓦)施工方案
评论
0/150
提交评论