版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年山东省聊城临清市中考考前最后一卷数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组158159160160160161169乙组158159160161161163165以下叙述错误的是()A.甲组同学身高的众数是160B.乙组同学身高的中位数是161C.甲组同学身高的平均数是161D.两组相比,乙组同学身高的方差大2.如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数y=kx(k>0,x>0)的图象经过点C,则A.33B.32C.23.已知函数y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c﹣4=0的根的情况是A.有两个相等的实数根 B.有两个异号的实数根C.有两个不相等的实数根 D.没有实数根4.已知是二元一次方程组的解,则m+3n的值是()A.4 B.6 C.7 D.85.如图,三棱柱ABC﹣A1B1C1的侧棱长和底面边长均为2,且侧棱AA1⊥底面ABC,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为()A. B. C. D.46.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处 B.2处 C.3处 D.4处7.在刚过去的2017年,我国整体经济实力跃上了一个新台阶,城镇新增就业1351万人,数据“1351万”用科学记数法表示为()A.13.51×106 B.1.351×107 C.1.351×106 D.0.1531×1088.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+39.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于(
)A.30° B.35° C.40° D.50°10.下列说法中,错误的是()A.两个全等三角形一定是相似形B.两个等腰三角形一定相似C.两个等边三角形一定相似D.两个等腰直角三角形一定相似二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:____________12.函数y=的自变量x的取值范围为____________.13.已知m、n是一元二次方程x2+4x﹣1=0的两实数根,则=_____.14.二次函数的图象与y轴的交点坐标是________.15.如图,△ABC中,AB=AC,D是AB上的一点,且AD=AB,DF∥BC,E为BD的中点.若EF⊥AC,BC=6,则四边形DBCF的面积为____.16.在平面直角坐标系xOy中,若干个半径为1个单位长度,圆心角是的扇形按图中的方式摆放,动点K从原点O出发,沿着“半径OA弧AB弧BC半径CD半径DE”的曲线运动,若点K在线段上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒个单位长度,设第n秒运动到点K,为自然数,则的坐标是____,的坐标是____三、解答题(共8题,共72分)17.(8分)某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:171816132415282618192217161932301614152615322317151528281619对这30个数据按组距3进行分组,并整理、描述和分析如下.频数分布表组别一二三四五六七销售额频数79322数据分析表平均数众数中位数20.318请根据以上信息解答下列问题:填空:a=,b=,c=;若将月销售额不低于25万元确定为销售目标,则有位营业员获得奖励;若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.18.(8分)关于的一元二次方程.求证:方程总有两个实数根;若方程有一根小于1,求的取值范围.19.(8分)如图,一次函数y=-x+5的图象与反比例函数y=(k≠0)在第一象限的图象交于A(1,n)和B两点.求反比例函数的解析式;在第一象限内,当一次函数y=-x+5的值大于反比例函数y=(k≠0)的值时,写出自变量x的取值范围.20.(8分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.21.(8分)如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,且DE=BC.如果AC=6,求AE的长;设,,求向量(用向量、表示).22.(10分)如图,在△ABC中,∠B=∠C=40°,点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,到达C点、B点后运动停止.求证:△ABE≌△ACD;若AB=BE,求∠DAE的度数;拓展:若△ABD的外心在其内部时,求∠BDA的取值范围.23.(12分)如图,正方形ABCD的边长为2,BC边在x轴上,BC的中点与原点O重合,过定点M(-2,0)与动点P(0,t)的直线MP记作l.(1)若l的解析式为y=2x+4,判断此时点A是否在直线l上,并说明理由;(2)当直线l与AD边有公共点时,求t的取值范围.24.已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).(1)求此抛物线的表达式;(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】
根据众数、中位数和平均数及方差的定义逐一判断可得.【详解】A.甲组同学身高的众数是160,此选项正确;B.乙组同学身高的中位数是161,此选项正确;C.甲组同学身高的平均数是161,此选项正确;D.甲组的方差为,乙组的方差为,甲组的方差大,此选项错误.故选D.【点睛】本题考查了众数、中位数和平均数及方差,掌握众数、中位数和平均数及方差的定义和计算公式是解题的关键.2、D【解析】解:∵四边形ABCD是平行四边形,点A的坐标为(﹣4,0),∴BC=4,∵DB:DC=3:1,∴B(﹣3,OD),C(1,OD),∵∠BAO=60°,∴∠COD=30°,∴OD=3,∴C(1,3),∴k=3,故选D.点睛:本题考查了平行四边形的性质,掌握平行四边形的性质以及反比例函数图象上点的坐标特征是解题的关键.3、A【解析】
根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.【详解】∵函数的顶点的纵坐标为4,∴直线y=4与抛物线只有一个交点,∴方程ax2+bx+c﹣4=0有两个相等的实数根,故选A.【点睛】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.4、D【解析】分析:根据二元一次方程组的解,直接代入构成含有m、n的新方程组,解方程组求出m、n的值,代入即可求解.详解:根据题意,将代入,得:,①+②,得:m+3n=8,故选D.点睛:此题主要考查了二元一次方程组的解,利用代入法求出未知参数是解题关键,比较简单,是常考题型.5、B【解析】分析:易得等边三角形的高,那么左视图的面积=等边三角形的高×侧棱长,把相关数值代入即可求解.详解:∵三棱柱的底面为等边三角形,边长为2,作出等边三角形的高CD后,∴等边三角形的高CD=,∴侧(左)视图的面积为2×,故选B.点睛:本题主要考查的是由三视图判断几何体.解决本题的关键是得到求左视图的面积的等量关系,难点是得到侧面积的宽度.6、D【解析】
到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【详解】满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.如图所示,故选D.【点睛】本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解.7、B【解析】
根据科学记数法进行解答.【详解】1315万即13510000,用科学记数法表示为1.351×107.故选择B.【点睛】本题主要考查科学记数法,科学记数法表示数的标准形式是a×10n(1≤│a│<10且n为整数).8、D【解析】
直接利用配方法将原式变形,进而利用平移规律得出答案.【详解】y=x2﹣6x+21=(x2﹣12x)+21=[(x﹣6)2﹣16]+21=(x﹣6)2+1,故y=(x﹣6)2+1,向左平移2个单位后,得到新抛物线的解析式为:y=(x﹣4)2+1.故选D.【点睛】本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键.9、C【解析】试题分析:已知m∥n,根据平行线的性质可得∠3=∠1=70°.又因∠3是△ABD的一个外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案选C.考点:平行线的性质.10、B【解析】
根据相似图形的定义,结合选项中提到的图形,对选项一一分析,选出正确答案.【详解】解:A、两个全等的三角形一定相似,正确;B、两个等腰三角形一定相似,错误,等腰三角形的形状不一定相同;C、两个等边三角形一定相似;正确,等边三角形形状相同,只是大小不同;D、两个等腰直角三角形一定相似,正确,等腰直角三角形形状相同,只是大小不同.故选B.【点睛】本题考查的是相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.特别注意,本题是选择错误的,一定要看清楚题.二、填空题(本大题共6个小题,每小题3分,共18分)11、y【解析】
根据幂的乘方和同底数幂相除的法则即可解答.【详解】【点睛】本题考查了幂的乘方和同底数幂相除,熟练掌握:幂的乘方,底数不变,指数相乘的法则及同底数幂相除,底数不变,指数相减是关键.12、x≥-1【解析】试题分析:由题意得,x+1≥0,解得x≥﹣1.故答案为x≥﹣1.考点:函数自变量的取值范围.13、1【解析】
先由根与系数的关系求出m•n及m+n的值,再把化为的形式代入进行计算即可.【详解】∵m、n是一元二次方程x2+1x﹣1=0的两实数根,∴m+n=﹣1,m•n=﹣1,∴===1.故答案为1.【点睛】本题考查的是根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=﹣,x1•x2=.14、【解析】
求出自变量x为1时的函数值即可得到二次函数的图象与y轴的交点坐标.【详解】把代入得:,∴该二次函数的图象与y轴的交点坐标为,故答案为.【点睛】本题考查了二次函数图象上点的坐标特征,在y轴上的点的横坐标为1.15、2【解析】
解:如图,过D点作DG⊥AC,垂足为G,过A点作AH⊥BC,垂足为H,∵AB=AC,点E为BD的中点,且AD=AB,∴设BE=DE=x,则AD=AF=1x.∵DG⊥AC,EF⊥AC,∴DG∥EF,∴,即,解得.∵DF∥BC,∴△ADF∽△ABC,∴,即,解得DF=1.又∵DF∥BC,∴∠DFG=∠C,∴Rt△DFG∽Rt△ACH,∴,即,解得.在Rt△ABH中,由勾股定理,得.∴.又∵△ADF∽△ABC,∴,∴∴.故答案为:2.16、【解析】
设第n秒运动到Kn(n为自然数)点,根据点K的运动规律找出部分Kn点的坐标,根据坐标的变化找出变化规律“K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0)”,依此规律即可得出结论.【详解】设第n秒运动到Kn(n为自然数)点,观察,发现规律:K1(),K2(1,0),K3(),K4(2,0),K5(),…,∴K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0).∵2018=4×504+2,∴K2018为(1009,0).故答案为:(),(1009,0).【点睛】本题考查了规律型中的点的坐标,解题的关键是找出变化规律,本题属于中档题,解决该题型题目时,根据运动的规律找出点的坐标,根据坐标的变化找出坐标变化的规律是关键.三、解答题(共8题,共72分)17、(1)众数为15;(2)3,4,15;8;(3)月销售额定为18万,有一半左右的营业员能达到销售目标.【解析】
根据数据可得到落在第四组、第六组的个数分别为3个、4个,所以a=3,b=4,再根据数据可得15出现了5次,出现次数最多,所以众数c=15;从频数分布表中可以看出月销售额不低于25万元的营业员有8个,所以本小题答案为:8;本题是考查中位数的知识,根据中位数可以让一半左右的营业员达到销售目标.【详解】解:(1)在范围内的数据有3个,在范围内的数据有4个,15出现的次数最大,则众数为15;(2)月销售额不低于25万元为后面三组数据,即有8位营业员获得奖励;故答案为3,4,15;8;(3)想让一半左右的营业员都能达到销售目标,我认为月销售额定为18万合适.因为中位数为18,即大于18与小于18的人数一样多,所以月销售额定为18万,有一半左右的营业员能达到销售目标.【点睛】本题考査了对样本数据进行分析的相关知识,考查了频数分布表、平均数、众数和中位数的知识,解题关键是根据数据整理成频数分布表,会求数据的平均数、众数、中位数.并利用中位数的意义解决实际问题.18、(2)见解析;(2)k<2.【解析】
(2)根据方程的系数结合根的判别式,可得△=(k-2)2≥2,由此可证出方程总有两个实数根;(2)利用分解因式法解一元二次方程,可得出x=2、x=k+2,根据方程有一根小于2,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.【详解】(2)证明:∵在方程中,△=[-(k+3)]-4×2×(2k+2)=k-2k+2=(k-2)≥2,∴方程总有两个实数根.(2)∵x-(k+3)x+2k+2=(x-2)(x-k-2)=2,∴x=2,x=k+2.∵方程有一根小于2,∴k+2<2,解得:k<2,∴k的取值范围为k<2.【点睛】此题考查根的判别式,解题关键在于掌握运算公式.19、(1);(2)1<x<1.【解析】
(1)将点A的坐标(1,1)代入,即可求出反比例函数的解析式;
(2)一次函数y=-x+5的值大于反比例函数y=,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可.【详解】解:(1)∵一次函数y=﹣x+5的图象过点A(1,n),∴n=﹣1+5,解得:n=1,∴点A的坐标为(1,1).∵反比例函数y=(k≠0)过点A(1,1),∴k=1×1=1,∴反比例函数的解析式为y=.联立,解得:或,∴点B的坐标为(1,1).(2)观察函数图象,发现:当1<x<1.时,反比例函数图象在一次函数图象下方,∴当一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值时,x的取值范围为1<x<1.【点睛】本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式.本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键.20、(1)见解析;(1)4【解析】
(1)根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得证;(1)由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.【详解】(1)证明:∵CE∥DB,BE∥DC,∴四边形DBEC为平行四边形.又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,∴CD=BD=AC,∴平行四边形DBEC是菱形;(1)∵点D,F分别是AC,AB的中点,AD=3,DF=1,∴DF是△ABC的中位线,AC=1AD=6,S△BCD=S△ABC∴BC=1DF=1.又∵∠ABC=90°,∴AB===4.∵平行四边形DBEC是菱形,∴S四边形DBEC=1S△BCD=S△ABC=AB•BC=×4×1=4.点睛:本题考查了菱形的判定与性质,直角三角形斜边上的中线等于斜边的一半,三角形中位线定理.由点D是AC的中点,得到CD=BD是解答(1)的关键,由菱形的性质和三角形的面积公式得到S四边形DBEC=S△ABC是解(1)的关键.21、(1)1;(2).【解析】
(1)由平行线截线段成比例求得AE的长度;(2)利用平面向量的三角形法则解答.【详解】(1)如图,∵DE∥BC,且DE=BC,∴.又AC=6,∴AE=1.(2)∵,,∴.又DE∥BC,DE=BC,∴【点睛】考查了平面向量,需要掌握平面向量的三角形法则和平行向量的定义.22、(1)证明见解析;(2);拓展:【解析】
(1)由题意得BD=CE,得出BE=CD,证出AB=AC,由SAS证明△ABE≌△ACD即可;(2)由等腰三角形的性质和三角形内角和定理求出∠BEA=∠EAB=70°,证出AC=CD,由等腰三角形的性质得出∠ADC=∠DAC=70°,即可得出∠DAE的度数;拓展:对△ABD的外心位置进行推理,即可得出结论.【详解】(1)证明:∵点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,∴BD=CE,∴BC-BD=BC-CE,即BE=CD,∵∠B=∠C=40°,∴AB=AC,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS);(2)解:∵∠B=∠C=40°,AB=BE,∴∠BEA=∠EAB=(180°-40°)=70°,∵BE=CD,AB=AC,∴AC=CD,∴∠ADC=∠DAC=(180°-40°)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- AI赋能创意产业的未来商业模式
- 利用科技手段提升减肥心理调适效果
- 办公室中的学生心理健康教育
- 农村电子商务与农产品电商的协同发展研究
- 幼儿园新轮状病毒安全教育
- 企业服务热线管理与客户关系建立
- 企业安全教育培训内容与方法探讨
- 企业文化中创新型团队的培育之道
- 劳动合同范本标准版
- 以小见大家庭教育中的微观世界教育
- 2023年医科医学计算机应用题库
- (正式版)SHT 3070-2024 石油化工管式炉钢结构设计规范
- 有限元分析实验报告
- Unit2Whattimedoyougotoschool?大单元整体教学设计人教版七年级英语下册
- JTG F80-1-2004 公路工程质量检验评定标准 第一册 土建工程
- 浙江科学技术出版社小学五年级下册综合实践活动完全教案(教学计划-进度计划-共14节课时)新疆有
- 四川音乐学院附属中等音乐学校辅导员招聘考试真题2023
- 浙江省台州市椒江区2023-2024学年四年级上学期期末科学试卷
- 第1课《北京的春节》课件 2023-2024学年统编版(五四学制)语文六年级下册
- 2024版国开电大法律事务专科《民法学(1)》期末考试总题库
- 山东建筑大学混凝土结构原理期末考试复习题
评论
0/150
提交评论