+湖南省湘潭市岳塘区四校联考2023-2024学年八年级下学期期中+数学试卷+_第1页
+湖南省湘潭市岳塘区四校联考2023-2024学年八年级下学期期中+数学试卷+_第2页
+湖南省湘潭市岳塘区四校联考2023-2024学年八年级下学期期中+数学试卷+_第3页
+湖南省湘潭市岳塘区四校联考2023-2024学年八年级下学期期中+数学试卷+_第4页
+湖南省湘潭市岳塘区四校联考2023-2024学年八年级下学期期中+数学试卷+_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年湖南省湘潭市岳塘区四校联考八年级(下)期中数学试卷一、选择题(本题共10小题,共40分)1.下列长度的三条线段,不能组成直角三角形的是(

)A.1,2,3 B.5,12,13 C.0.3,0.4,0.5 D.32,2.窗棂即窗格(窗里面的横的或竖的格)是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.下列表示我国古代窗棂样式结构图案中,既是轴对称图形又是中心对称图形的是(

)A. B.

C. D.3.如果一个多边形的内角和是1800°,这个多边形是(

)A.八边形 B.十四边形 C.十边形 D.十二边形4.如图,Rt△ABC,∠ACB=90°,CD⊥AB于D,∠BCD

A.40° B.38° C.50° D.30°5.在▱ABCD中,AB=2cm,BC=3cm,则▱ABCDA.10cm B.8cm C.6cm6.如图,下列条件中,不能使▱ABCD成为菱形的是(

)A.AB=AD

B.AC⊥BD

C.

7.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数是(

)A.110°

B.120°

C.130°

D.140°8.已知a,b,c为△ABC的三边长,若满足|a-b|+A.等边三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形9.如图,在正方形ABCD中,AB=9,点E、F分别在边AB、CD上,∠FEB=120°.若将四边形EBCF沿EF折叠,点C恰好落在AD边C'上,则C'

A.3 B.33 C.310.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D

A.AD是∠BAC的平分线 B.∠ADC=60°

C.点D在线段AB的垂直平分线上 D.S△二、填空题(本题共6小题,共24分)11.若直角三角形的两条直角边分别为12和16,则它的斜边上的中线长为______.12.已知一个n边形的内角和等于1980°,则n=

.13.如图,△ABC是直角三角形,BD平分∠ABC,AD=4,则点D到BC的距离为______.

14.如图,菱形ABCD中,对角线AC、BD相交于点O,且AC=24,BD=10,若点E是BC边的中点,则OE的长是______.

15.如图,已知P是∠AOB平分线上一点,∠AOP=15°,CP/​/OB交OA于点C,PD⊥OB,垂足为D,且PC=6

16.正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是______.

三、解答题(本题共12小题,共110分)17.已知,如图:AE⊥AB,BC⊥AB,AE=AB,18.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,B点坐标为(-1,-1).

(1)写出A、C点的坐标:A(______,______)、C(______,______);

(2)将△ABC先向上平移2个单位长度,再向右平移3个单位长度,得到△A'B'C'19.已知:如图,在▱ABCD中,∠ABC、∠ADC的平分线分别交对角线AC于点M、N.求证:四边形BMDN20.将两张完全相同的矩形纸片ABCD,矩形纸片FBED按如图方式放置,BD为重合的对角线,重叠部分为四边形DHBG.

(1)求证:四边形DHBG为菱形;

(2)若四边形DHBG的面积为60,AD=6,求AB的长.21.如图,已知正方形ABCD,AB=4,点M在边CD上,射线AM交BD于点E,交射线BC于点F,过点C作CP⊥CE,交AF于点P.

(1)求证:△ADE≌△CDE.

(2)判断△CPF的形状,并说明理由.

(3)作DM的中点N,连结PN,若22.【探究】如图①,在△ABC中,∠ACB=90°,D是AB的中点,连结CD.若CD=8,则AB=______;

【应用】如图②,在△ABC中,∠BAC=90°,AD是BC边上的高,E、F分别是AB、AC边的中点,若AB=8,AC=6,求△DEF的周长;

【拓展】如图③,四边形ABCD中,∠ABC=∠ADC=90°,∠BAD=45°,连结AC、BD.M答案和解析1.【答案】D

【解析】解:A、12+(2)2=(3)2,故选项A中的三条线段能构成直角三角形;

B、52+122=132,故选项B中的三条线段能构成直角三角形;

C、0.32.【答案】CD

【解析】解:A、该图形是轴对称图形,不是中心对称图形,故此选项不符合题意;

B、该图形是轴对称图形,不是中心对称图形,故此选项不符合题意;

C、既是轴对称图形又是中心对称图形,故此选项符合题意;

D、既是轴对称图形又是中心对称图形,故此选项符合题意.

故选:CD.

根据轴对称图形与中心对称图形的概念求解.

此题主要考查了中心对称图形与轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】D

【解析】解:这个正多边形的边数是n,

则(n-2)⋅180°=1800°,

解得:n=12,

则这个正多边形是12.

故选:D.

n边形的内角和可以表示成(n4.【答案】A

【解析】解:∵CD⊥AB,

∴∠ADC=9°.

又∵∠ACB=90°,

∴∠A+∠ACD=∠BCD+∠ACD.

∴∠A=∠BCD5.【答案】A

【解析】解:∵四边形ABCD是平行四边形,

∴AB=CD,BC=AD,

∵AB=2cm,BC=3cm,

∴平行四边形ABCD的周长为:2(AB+BC6.【答案】D

【解析】解:∵四边形ABCD是平行四边形,

∵AB=AD,

∴▱ABCD是菱形,故A不符合题意;

∵四边形ABCD是平行四边形,

∵AC⊥BD,

∴▱ABCD是菱形,故B不符合题意;

∵四边形ABCD是平行四边形,

∵∠ABD=∠CBD,

∴▱ABCD是菱形,故C不符合题意;

∵四边形ABCD是平行四边形,

∵AC=BD,

∴▱ABCD是矩形,不是菱形,故D符合题意;

故选:7.【答案】C

【解析】解:如图,

∵∠1=40°,∠E=90°,

∴∠3=∠1+∠E=130°,

∵AB/​/CD,

∴∠2=∠3=130°.

故选:C.8.【答案】C

【解析】解:∵|a-b|+a2+b2-c2=0,

∴a-b=0,a2+b2-c2=0,

∴a=9.【答案】B

【解析】解:在正方形ABCD中,CD=AB=9,CD/​/AB,∠D=90°,

∴∠FEB+∠EFC=180°,

∴∠EFC=∠C'FE=60°,

∴∠C'FD=180°-∠EFC-∠C'FE=60°,

10.【答案】D

【解析】解:由作法得AD平分∠BAC,所以A选项的结论正确;

∵∠C=90°,∠B=30°,

∴∠BAC=60°,

∴∠CAD=∠BAD=30°,

∴∠ADC=90°-∠CAD=90°-30°=60°,所以B选项的结论正确;

∵∠B=∠BAD,

∴DA=DB,

∴点D在AB的垂直平分线上,所以C选项的结论正确;

在Rt△ACD中,

∵∠CAD=30°,

∴AD=2CD,

而BD=AD,

∴BD=2CD,

∴BD:BC=2:3,

∴S△ABD:S△ABC=2:3,所以D选项的结论错误.

故选:D11.【答案】10

【解析】解:由勾股定理得,直角三角形的斜边长=122+162=20,

则斜边上的中线长=1212.【答案】13

【解析】【分析】

本题考查了多边形的内角和定理:n边形的内角和为(n-2)·180°.

根据n边形的内角和为(n-2)·180°得到(n-2)·180°=1980°,然后解方程即可求解.

【解答】

解:n边形的内角和为(n-2)·180°,13.【答案】4

【解析】解:过点D作DE⊥BC于E,

∵BD平分∠ABC,DE⊥BC,∠A=90°,

∴DE=AD=4,

故答案为:414.【答案】6.5

【解析】解:∵四边形ABCD是菱形,

∴AC⊥BD,OA=12AC=12,OD=12BD=5,

在Rt△BOC中,BC=BO2+CO2=13,

15.【答案】9

【解析】解:过点P作PE⊥OA于点E,如图所示,

∵OP平分∠AOB,PD⊥OB,PE⊥OA,∠AOP=15°,

∴∠AOB=30°,∠COP=∠POD=15°,PD=PE,

∵CP/​/OB,

∴∠ECP=∠AOB=30°,∠POD=∠CPO=∠AOP,

∵PC=6,∠PEC=90°16.【答案】5【解析】解:如图,连接AC、CF,

∵正方形ABCD和正方形CEFG中,BC=1,CE=3,

∴AC=2,CF=32,∠ACD=∠GCF=45°,

∴∠ACF=90°,

由勾股定理得,AF=AC2+CF2=2+18=217.【答案】证明:∵AE⊥AB,BC⊥AB,

∴∠EAD=∠CBA=90°,

在Rt△ADE和中Rt△ABC中,

DE=ACAE=AB,

∴Rt△ADE≌Rt△ABC(HL【解析】求出∠EAD=∠CBA=90°,根据HL证Rt△ADE≌Rt△ABC,推出∠EDA18.【答案】-2

1

1

2【解析】解:(1)A点坐标为(-2,1),C点坐标为(1,2);

故答案为-2,1;1,2;

(2)如图,△A'B'C'为所作,A'点坐标为(1,3),B'点坐标为(2,1),C点坐标为(4,4);

(3)△A'B'C'的面积=3×3-12×2×3-12×3×1-12×2×1=72.

(1)利用各象限点的坐标特征写出A、19.【答案】证明:∵四边形ABCD是平行四边形,

∴∠ABC=∠ADC,AB=CD,AB//DC,

∵BM平分∠ABC,DN平分∠ADC,

∴∠ABM=12∠ABC,∠CDN=12∠ADC,

∴∠ABM=∠CDN,∠BAM=∠DCN,

在△ABM和△CDN中,

【解析】先证明△ABM≌△CDN,再证明BM=DN,20.【答案】(1)证明:∵四边形ABCD、FBED是完全相同的矩形,

∴AB/​/CD,DF/​/BE,∠A=∠F=90°,AD=FB,

∴四边形DHBG是平行四边形,

在△AHD和△FHB中,

∠A=∠F∠AHD=∠FHBAD=FB,

∴△AHD≌△FHB(AAS),

∴DH【解析】(1)先根据矩形的性质可得AB/​/CD,DF/​/BE,∠A=∠F=90°,AD=FB,再根据平行四边形的判定可得四边形DHBG是平行四边形,然后根据三角形全等的判定可证出△AHD≌△FHB,根据全等三角形的性质可得DH21.【答案】(1)证明:∵四边形ABCD是正方形,

∴AD=CD,∠ADE=∠CDE=45°,

在△ADE和△CDE中,

AD=CD∠ADE=∠CDEDE=DE,

∴△ADE≌△CDE(SAS);

(2)解:△CPF是等腰三角形,理由如下:

∵△ADE≌△CDE,

∴∠DAE=∠DCE,

又∵CP⊥CE,DC⊥CF,

∴∠DCE=∠PCF,

又∵AD/​/BF,

∴∠DAE=∠CFP【解析】(1)由“SAS”可证△ADE≌△CDE;

(2)由全等三角形的性质可得∠DAE=∠DCE,由余角的性质可得∠DCE=∠PCF22.【答案】16

16

【解析】解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论