版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Long-DurationEnergyStorage:EmergingPilotProject
Summaries
SI:EPRIInsight
in
f
www.epri.com
©2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.
Introduction
Purpose:
ThisreportsummarizesrecentpilotprojectsofLong-DurationEnergyStorage(LDES)technologies,specificallytechnologiesdevelopedbyCMBlu,EnergyDome,StorworksPower(Storworks),andRedoxBlox.1Itaimstoprovidehighlightsonthetechnologicalprocesses,performanceandcostmetrics,andpotentialviabilityasdemonstratedthroughfieldworkoftheseemergingenergystoragesolutions.Byexaminingthesepilotprojects,thereportprovidesinsightsintounderstandinghowthesetechnologiesfunctionandhowtheymayfitintoperspectiveportfoliostoenhancegridstabilityandvariablerenewableenergyutilization.Pleasenotethattheprojectionsandevaluationswithinthisreportareprimarilybasedonforward-lookingstatementsfromthemanufacturersoftheLDEStechnologiesandhavenotbeenindependentlyverifiedbyEPRI,exceptwhereexplicitlystated.
Relevance:
Insightsfromtheseenergystoragepilotprojectsofferhigh-levelqualitativeandquantitativeinformationforutilities.Theseinsights
includesummariesofperformanceandcostdata,whichareimportantforevaluatingLDESsystems.2,3Additionally,thereporthighlightsactivitiesandfindingsfromthepilottesting,providingabetterunderstandingofthestatusandmaturityofthesetechnologiesandtheirusecases.Byunderstandingtheperformance,costs,andmaturityofthesepilotprojects,utilitiescanmakemoreinformeddecisions
aboutthepotentialbenefitsofLDEStechnologiesfortheirenergyportfolio.4Moredetailsontheseandotherenergystorage
technologiescanbeobtainedthroughparticipationinEPRI'sProgram94“EnergyStorageandDistributedGeneration”andProgram221“BulkEnergyStorage.”
1EnergyStorageTechnologyDatabase(ESTD)v1.0.EPRI,PaloAlto,CA:2023.
2EPRIInsights:CurrentEvents,IndustryForecasts,andR&DtoInformEnergyStrategy.EPRI,PaloAlto,CA:2022.
3002025959
.
3Long-DurationEnergyStorage:PotentialUseCasesandTechnology.EPRI,PaloAlto,CA:2021.
3002019019.
4Long-DurationEnergyStorageBenefits.EPRI,PaloAlto,CA:2021.
3002021099
.
2©2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.
EmergingLDESTechnologiesOverview
Electrochemical:Usesreversiblechemicalreactionstogenerateelectricity,withlithiumionbatteriesbeingtheprincipaltechnology.Newelectrochemicalbatteriesrepresentapromisingfrontierinlong-durationenergystorage.Thesetechnologiesuselow-costrawmaterialssuchaszincandironintheactivematerialsthatstoreenergy.Thesebatteriesarescalable,withprojectedlowmarginal
costofenergy,makingthemsuitableforapplicationsrequiredsustainedenergydelivery,suchasrenewableintegrationandbackuppower.
Mechanical:Harnesseskineticorpotentialenergytostoreandreleaseenergy.Potentialenergysystems,suchaspumpedhydro
storage,usegravityandinvolveliftingmasswhenchargingandloweringittospinageneratortocreatepowerwhendischarging.
Kineticenergysystems,suchascompressedairenergystorage(CAES),generallycompressaworkingfluidwhencharging,storingitatpressure,thenexpandingittodriveaturbinewhendischarging.Awidearrayofemergingmechanicalenergystoragesystemsarebeingdeveloped,whichpromiselowercostandhigherround-tripefficiency(RTE),alongwitheasiersiting.
Thermal:Storesandreleasesenergyintheformofheat.Heatcaneitherbestoredsensiblyusingmediasuchasconcrete,gravel,
sand,orsaltorusingaphase-changematerial,whichprovidesadditionalheatfromphasetransitions.Whencharging,themediumis
eitherheatedbyahotfluidorelectrically,andwhendischarging,aworkingfluidisheatedtoeitherdriveapowercycle,orto
provideheatdirectlytoaprocess.Thermalenergystorage(TES)hasthepotentialtobethelowestcostLDESsystem,balancedbylowerefficiencies.
Chemical:Involvescreatingalow-carbonfuelorperformingareversiblethermochemicalreactionthatcangenerateheat.Hydrogen
istheprimarylow-carbonfuelcandidateandcanbegeneratedusingelectrolysis,orchemicallythroughreformingafossilfuel,
coupledwithcarboncaptureandstorage.Othercandidatelow-carbonfuelsincludeammoniaandbio-fuels.Oncecreated,thesefuelscanbestoredforuptoseasonalperiodsandburnedinconventionalpowergenerators.Thermochemicalsystemsusea
compoundthatcombinedwithairorwatergeneratesheattodriveapowercycle,thatisthenreformedtorepeattheprocess.
3©2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.
CMBlu(Electrochemical)
CMBlu'sOrganicSolidFlowbatteryisaredox(reduction-oxidation)flowbattery(RFB)containingelectrolytesinthesolidandliquidform.
Nearlyalltheenergyisstoredinacarbon-basedsolid.Theliquid
electrolyteactsasashuttle,movingchargedionsbetweenpositiveandnegativesidesthroughthebatterystacktochargeanddischarge.Theseparatetanksandstacksmakeitpossibletoscalepowerandcapacityindependently.
TechnologyBenefits
LongLifetime:Theseparationofelectrolytesintankseliminatessomemechanismsofcapacitydegradation.Thetechnologyis
projectedtohavea20-yearprojectlife,capableofover20,000cycles,withminimallossofcapacityduetocycling.
CostEffective:Abundantcarbon-basedmoleculesforthe
electrolytehavethepotentialtobelowcostwhenmanufacturedatscale.Thisincombinationwiththelonglifetimecanmakethetechnologycostcompetitiveatscale.
Figure1.SchematicoftheOrganicSolidFlowBattery
Figure1showstheoperationofCMBlu'sSolidFlowbattery.Twoexternaltankscontainingdifferentelectrolytes,onepositively
charged,andonenegativelycharged,areconnectedtothestackviapumpsthatdelivertheelectrolytestothepowermodule.
Theyarepreventedfrommixingbyathinmembraneandpass-overporouselectrodestocauseeitherachargingordischarging.
Tocharge,oxidationoccursattheanodecausingalossin
electrons,whichflowinthepowermoduleandtothecathode.Theprocessisreversedtodischarge,wheretheanode
experiencesreductionandthecathodeexperiencesoxidation.
4©2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.
CMBlu(Electrochemical)
Process
TheOrganicSolidFlowbatteryismadeupoftwoexternaltanks,abatterystackandapowermoduleconnectingthebatterytothegrid.Theexternaltanks
containeitheranolyteoracatholyte(positivelyornegativelycharged
electrolyterespectively).Eachoftheelectrolytesarecomposedofanactive
solidandliquidmaterialofmatchingpotentials.Thebatterystackismadeupoffourcomponentsinarepeatingorder.Theelectrodesfacilitatetheredox
reaction.Themembraneisaninsulatorthatselectivelyallowsionmigrationbutpreventsthedifferentelectrolytesfrommixing.Currentcollectorsfacilitatetheflowofelectricchargeandconnectthestacktothegrid.Theendplatesprovidemechanicalsupportandelectricalinterfacestothepowerconversionsystem.
Thebatteryoutputisdependentonthematerialandsurfaceareaofelectrodes,thestacksize,andthekineticsoftheredoxprocess.
Pilot
CMBluiscollaboratingwithWECEnergyGroupandEPRItoinstalla1–2MWhpilotprojectatValleyPowerPlantinMilwaukee,WItotesttheperformanceofthebatterysystem,includingdischargedurationsoffivetotenhours.5Initial
testingofasingleDCmoduleprototypewassuccessfulatthepowerplantin
December2023withtestingon-siteinitializationofthemodule,severalchargeanddischargeratesandprovidingcriticallogisticalexperiencewithsea,rail,
andtrucktransport.Aspartofthepilotproject,WEC,EPRI,andCMBlu
conductedadetailedhazardmitigationanalysis(HMA)ofthebatterymodule,focusingonpotentialhazardstopersonnel.TheHMAusedtheEnergyStorageIntegrationCouncilFlowBatteryHMAGuideandprovidedinputtopilottestplansandsafetychecklists.
5“WECEnergyGroupAnnouncesProjecttoDemonstrateLong-durationOrganicFlowBatteryStorage,”
February2,2023.
/news-releases/wec-energy-group-announces-project-to-
demonstrate-long-duration-organic-flow-battery-storage-301737840.html
.
Figure2.ModularBattery(usedwithpermissionfromCMBlu)
CMBlu’sOrganicSolidFlowbatterymoduleisbeingdesignedtoenablescalability.Figure2showshowthemodulescanbe
stackedtoincreasethesystem-levelenergydensity.Eachmodulehasatargetedfootprintof21.5–26.9ft2(2–2.5m2),depending
onduration,anda50MW,250MWhsystemhasaprojectedfootprintof33,906ft2(3150m2)forthebatteryportion.
5©2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.
EnergyDome(Mechanical)
EnergyDomehasdevelopedaCO2BatterysystemforLDES,utilizingcarbon
dioxideasthestoragemedium.Thissystem,whichoperatessimilarlytoCAESbutusesCO2storedabove-groundinsteadofairstoredbelow-ground.Key
featuresincludeefficientheatcaptureduringCO2compressionandaflexible,above-groundCO2gasdome,allowingfordiversesitingpossibilities.Thepilotproject,a2.5MWe/4MWhegrid-connectedunit,hassuccessfully
demonstratedthetechnology'sviabilityandwascompletedintwoyearsdespiteglobalchallenges.EnergyDomeplansalarger-scale20MWe,200MWheplantbylate2024.Thetechnologyistargetedforutilitiesand
industries,includingremoteminingoperations.
TechnologyBenefits
EnergyEfficient:EnergyDome'sCO2Battery,leveragingcommercially
availablecomponents,targetsan18-monthdevelopmentcycleandhasa
RTEof75–80%with100%depthofdischarge.Designedforalifespan
exceeding30years,itoperateswithoutcapacityorpowerdegradation.Thesystem'senergydensityis1.9kWh/ft³(67kWh/m³),surpassing
conventionalCAESsystems.A200MWhinstallationrequiresa10–12-acre(4–4.9hectares)footprintor17–20MWhe/acre(42–49.4MWhe/hectare).
CostEffective:Thecapitalcostsareestimatedat$150–220/kWh,withthelevelizedcostofstorageprojectedunder$100/MWhforearlyprojects,withthepotentialtoreduceto$50–60/MWh.Challengesincludesitingdueto
visualimpactofthedome.Thedomeisaninflatablestructurethatcanbeeasilyremovedattheendoflifeoftheproject.TheCO2Batterydoesnothaveanymajorenvironmentalimpactsasitonlyusessteel,water,andCO2initsfunctioning.
Figure3.ChargingEnergyDome'sCO2Battery
InFigure3,theCO2Battery'schargingprocessinvolvesamulti-stagecompressorpoweredbyanelectricmotor,compressingCO2tomediumpressure.Thisprocessgeneratesheat,whichisstoredintwotypesofTESsystems:aprimarypressurizedpackedparticle-bedsystemfor
directheattransfer,andasecondarytubularheatexchangersystemthatcoolstheCO2toaliquid/densephaseforstorageinabove-groundpressurevessels.
Figure4.DischargingEnergyDome'sCO2Battery
InFigure4,theCO2Battery'sdischargingprocessinvolvesreversingthechargingcycle.High-
pressureliquid/dense-phaseCO2isvaporizedandheatedbypassingthroughawater-tube
heatexchanger,servingasanevaporator,andthenthroughaTESpackedparticlebed.ThehotgaseousCO2expandsthroughaturbineconnectedtoagenerator,supplyingelectricitytothegrid.Afterexpansion,theCO2iscooledtoambienttemperatureforstorageinthedome's
bladder.Thissystemisengineeredfordailyuseovera30+yearlifespanwithoutdegradation.
6©2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.
EnergyDome(Mechanical)
Process
EnergyDome'sCO2BatterysystemutilizesCO2'suniquepropertyof
transitioningtoaliquidphaseatambienttemperatureundermoderatepressure.ThestorageprocesscompressesatmosphericCO2tomediumpressure,efficientlycapturingandstoringtheheatgeneratedduring
compressionintwoTESsystems.Whenelectricityisneeded,thestoredCO2
isreheatedandexpandedthroughaturbinetogeneratepower.The
system'sarchitectureallowsforconsistentoperationover30yearswith
dailycyclingandcanaccommodatecharge/dischargecyclesrangingfrom4to24hours.TohousetherequiredsubstantialquantitiesofCO2,adome
storagestructureisneeded,which,despiteitslargefootprint,remainscost-
effectiveduetotheuseofeconomicalmaterialsandminimalisticsitepreparationrequirements.
Pilot
TheCO2Batterysystem'sprojectedRTEof75–80%hingesonthe
performanceoftheTESmodulesandtheefficiencyofthecompressorsand
turbines.AchievingthisRTEonalargescalewouldmakethesystem
especiallysuitedforapplicationsrequiringhighdepthofdischargecycling
whileavoidingthedegradationissuescommoninelectrochemicalbatteries.
ThepilotplantinSardinia,withacapacityof2.5MWe/4MWhe,has
demonstratedpromisingresults,confirmingthesystem'santicipated
operationalcapabilities.TheseoutcomeshaveplacedEnergyDome's
technologyatTechnologyReadinessLevel7,reflectingitssuitabilityfor
broadercommercialapplicationandsignalingasignificantstepforwardinsustainableenergystoragesolutions.
Figure5.CO2Battery'sDome-ShapedHousingfortheInflatableBladderHoldingtheCO2inDischargeModeatAtmosphericPressure(usedwithpermissionfromEnergyDome
Figure5displaysEnergyDome's2.5MW,4MWhCO2Batteryunitin
Sardinia,whichhasbeenoperationalsinceMay2022.Ithighlightsthe
plant'sreal-worldoperationalandgrid-supportcapabilities.EnergyDomeisalsoinadvancedplanningforacommercial-scale20MW,200MWh
plantatthesamelocation,andhasseveralagreementsforadditional
projectsinItalyandbeyond,includingwithAlliantEnergy,whichasprimewonaUnitedStatesDepartmentofEnergyawardin2023toinstalla
commercial-scaleEnergyDomesysteminWisconsin.
7©2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.
StorworksPower(Thermal)
Storworksisdevelopingsystemstostoreenergyusingheat.Theyfocuson
thermalpowerplants,especiallythoseusingfossilfuels,solarconcentration,ornuclearenergy.Stackableblocksmadeofconcretematerialareusedtostore
theheat.Usingconcretehasproventobecostefficientandflexible.Chargingoccursbypassingeitherhotgas,steam,orhotairthroughsteeltubesintheconcreteblocks.Tousethestoredenergy,aworkingfluidsuchaswateror
carbondioxideispassedthroughseparatetubesintheconcreteblockstorecovertheheatanddeliverittoapowercycle.
Storworksmakesthreedifferentdesigns;differentsystemconfigurationsoffersolutionsforindustrialdecarbonization.
TechnologyBenefits
EnergyEfficient:Inanormalcombinedcycleplant,thegasturbinesmake
abouttwo-thirdsofthetotalpowerwiththeremainderbeingfromasteam-Rankinebottomingcycle.Usingtheconcreteheatrecoverysteamgenerator(HRSG),theturbinescanbesizedsmallerandrunefficientlyalldaylong,
sendingextraenergytotheheatstoragesystemwhenpowerisnotneededandreleasingthisenergywhenneeded.TheRTEis35–45%basedonthe
capabilityofthepowercyclethesystemisattachedto.
CostEffective:Unlikeotherenergystoragesystemsthatstoreheatusingspecializedmaterialsandrequireproprietarypowercyclestogenerate
energy,theStorworksconcretemodulesutilizeexistingpowerplant
hardware,includingthesteamturbine-generators,therebyreducingcapitalcostsfordeployment.Storworksanticipatesthecostofasystemexceeding10hoursofdurationretrofittedtoanexistingsteamturbineassetwouldbe$60–105/kWhe.
Figure6:StorworksBolderBlocs(usedwithpermissionfromStorworksPower,Inc.)
TheStorworksconcretemodules,showninFigure6,arelarge,flatblocks
withembeddedpipessetintothem.Eachtubehasabout2inches(5cm)ofconcretesurroundingthetubeenablingconductiveheattransfer.The
modules,called"BolderBlocs,"areabout40feet(12m)long,allowingthemtobeshippedonaregularflatbedtruck.Wheninstalled,theyarestacked
andconnectedusinganetworkofpipesanddistributionmanifolds.The
finalstackedassemblyiscoveredwithhigh-temperaturerockwool
insulationandcladwithwaterproofmetalsheetsforweatherprotection.Thefootprintisexpectedtobe>500MWhe/acre(1235MWhe/hectare).
8©2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.
Figure7:StorworksPlantGastonPilot(usedwithpermissionfromSouthernCompany)
TheConcreteThermalEnergyStorage(CTES)pilotplant,showninFigure7,consistsof7layersof
BolderBlocsstackedinabrickwork-likepatternalongwithanadditionalcoolingblocklayeratthe
bottomneededtoinsulatethefoundationsduringoperation.SupercriticalsteamfromthehostsiteenterstheCTESduringcharging(topright),warmingtheCTESandtherebygeneratinghigh-pressurecondensatethatisfurthercooledusingtheheatexchanger(bottomleft)beforebeingdepressurizedandstoredinalocalvessel(topleft).Thiscondensateisreusedduringdischargebypumpingtohighpressureandreversingtheflow,enteringtheCTESatthebottombeforebecomingsuperheated
steam,whichismeasuredandventedtoasafelocation.
StorworksPower(Thermal)
Pilot
TheCTESpilotplant,showninFigure7,isa10-MWhescale(2.5MWex4
hours)systematAlabamaPower'sPlantGastoninWilsonville,AL.LeadbyEPRIandfundedbytheU.S.DepartmentofEnergy,thisfacilityisdemonstratingthetechnology'sperformanceforthesteam-heatedversionbychargingusing
supercriticalsteamatapressureof3500psig(240barg)fromthehostplant
anddischargingatvariouspressuresanddurationstoquantifyperformance
andflexibilityofthesystemthroughoutthefullcharginganddischargingcycles.
Process
Fortheelectricalchargingversion,hotairisgeneratedviathermalheating
elementsandisfedthroughtheconcreteblocksfromthehotendtothecoldend.Thiscreatesa"thermocline"effectwithintheconcrete,forminga
consistenttemperaturezoneforheattransferfromthehottothecoldpart.Asthechargingprogresses,thetemperatureoftheblockmaterialincreases,
approachinghotairinlettemperature.Thisallowshotterairtoheatcooler
concretematerialfurtherintotheassembly.Fordischarge,theprocessis
reversedwithcoolairbeingheatedbytheblocksbeforebeingpassedtoaheatrecoverysteamgeneratortoraisesteamforpowergeneration.
NextSteps
StorworkshasbeendevelopingseveralvariantsoftheCTESsystem:
.FlexJoule:Designedtobechargedusingelectricityfromcurtailedrenewablesources,thisdesignusesairasaheattransferfluidtochargeanddischargetheBolderBlocsandaconventionalHRSGtoraisesteamforheatandpower.
.FlexOps:Steam-integratedBolderBlocsthatchargefromanddischargetoafossilplanttoreduceplantcyclingandlimitthenumberofstarts
Storworksisactivelylookingforcommercialopportunitiesforthesesystemsforstand-aloneindustrialdecarbonizationandfossilretrofittingapplications.
9©2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.
RedoxBlox(Chemical)
TheRedoxBloxsystem,leveragingmagnesium-oxide(MgXO3)pellets,operatesthroughtwomodes:charginganddischarging.
Charging:MgXO3pelletsareheatedfrom1830°F(1000°C)to2730°F(1450°C)withina
pressurevessel,inducinganendothermicreductionreaction.ThissplitsMgXO3intoMgXO2andreleasesoxygengas.Thisreactionstoresenergyinthesystem,withacapacityof
approximately64,000Btu/ft³(660kWhth/m³).Discharging:Pressurizedairintroduced
intothevesselreactswithMgXO2,reversingthepreviousreactionandreformingMgXO3.Heatgeneratedduringthisreactionisusedinagasturbine(GT)-generatortoproduce
electricityat50-55AC-AC%RTEwhenintegratingwithacombined-cycleGT.Thesystem'sdesigniscompatiblewithstandardGT-generators,enablingittointegrateintoexisting
energyinfrastructures.Thestoragesystemcanalsoproducehightemperatureheatforindustrialheatingapplicationswith90-95heat-heat%RTE.
TechnologyBenefits
HighEnergyDensityandLowPelletCost:RedoxBloxachievescompactenergystoragewithhighenergydensity–itsfootprintis1500–1800
MWhe/acre(3704–4444MWhe/hectare).TheproductioncostofitsMgXO3chemicalpelletsisanticipatedtorangefrom$600–800/ton
(equivalentto$1.8–2.4/kWhth).
CommerciallyCompatible:RedoxBloxisworkingtowardsbothindustrialheatingandelectricalpowergeneration.RedoxBloxismakingitssystemdirectlycompatiblewithcommercialturbomachinery,byrepurposing
existinginfrastructure,includinganaturalgascombinedcycleplant's
heatrecoverysteamgenerator,steamturbines,andelectricalswitchgear.
Figure8.SchematicoftheRedoxBloxThermochemicalEnergyStorageSystem
Figure8detailstheprocessflowoftheRedoxBloxthermochemicalenergy
storagesystem.Chargingmodestartswithheatingviaelectrodespassing
electricalcurrentthroughtheparticlebed,whichraisesthetemperatureoftheMgXO3particlebedwithinapressurevessel.Thisheatinducesachemical
reactionthatstoresenergy.Insulationbyfirebrickandhigh-temperature
materialsensuresminimalthermalloss.Oxygenproducedduringthismodeis
expelledbyanO2blower.Dischargemodestartswithcompressedairfedtotheparticlebed.Oxygenintheairisabsorbedandreleaseschemicalenergyas
heat.Theheatedairfromtheparticlebeddrivesaturbine,generating
electricityforthegrid.Thisdiagramillustratestheenergystorageprocess,fromintakeairtoelectricitygeneration,highlightingthesystem'skeycomponents
andthermalmanagementstrategy.
10©2024ElectricPowerResearchInstitute,Inc.Allrightsreserved.
Institute,Inc.Allrightsreserved.
RedoxBlox(Chemical)
PilotDesignCharacteristics
.Nominalstoragecapacity:100kWhth
.Two-thirdsratioofchemical-sensibleheatstorage
.Powerinput:15kWe(electricallyresistiveheaters)
.Thermalpoweroutput:10–20kWth
.Coreoperatingtemperature:1832–2642°F(1000–1450°C)
.Pressurerange:2.4–72.5psia(0.2–5bara)
.Surfacetemperature:<185°F(85°C)
.Bedpressuredrop:<0.15psi(1kPa)
Systemcontrolsweredevelopedtoestablishpressurecontrolloops,setacombinedpowerinputtothesystem,holdaconstanttemperatureovernight,andpreventpressureor
temperatureinthereactorfromsurpassingsafelimits.6
NextSteps
Movingforwardfortheelectricalpowerapplication,RedoxBloxwasrecentlyawarded$9M
fromtheCaliforniaEnergyCommissionfora10MWhth,100kWeprojecttostartoperationin2026.Thesystemwillbemoreoptimizedforheattransferandthepreventionofheatloss,and
itwillreduceassemblyandmaintenanceissuesexperiencedbythepilotsystem.Asafollowup,RedoxBloxisdevelopingoptionstodemonstratethenextscalewith2MWepower
capacity.
Figure9.RedoxBloxEnergyStorageModules(a)and(b)(usedwithpermissionfromRedoxBlox)
Figure9underscorestheprogressionofRedoxBlox'stechnologyfrominitialconcepttolarger-scaleprototypes,eachstepvalidatingandrefiningthesystem'scapabilities.Thesuccessfuloperationofearlierprototypeslaidthegroundworkforthedevelopmentofasmall-scalepilot,drivingthe
technology'spotentialtowardpracticalapplication.
(a)Sub-ScalePrototype(picturedontheleft):Featurestheadvanced10kWhthcapacity
prototype,whichunderwentover1400hoursofcharge-dischargecyclingin2021,highlightingthesystem'schemicalstability.
(b)Small-ScalePilot(picturedontheright):Featurescommercial-designedtemperaturesandpressureswithsimulatedchargeanddischargemodesat100kWhthcapacity,validatingcontrolstrategiesandcapabilities.
RedoxBloxisalsodevelopingitstechnologyforindustrialheatingapplications.Forscale-up,
R
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二手注塑机2024年度购销合同范本2篇带眉脚
- 2025版冷链物流货车承包经营合同范本3篇
- 2025年高端装备制造业货物采购运输合同3篇
- 二零二五年度2025场现代农业科技应用推广合同3篇
- 二零二五年度城市绿化项目承包经营合同赔偿细则3篇
- 2025版建筑工程施工安全管理技术咨询合同示范文本
- 二零二五年度彩钢板房拆除工程废弃物处置与资源化利用协议2篇
- 二零二五年度隧道工程安装施工合同6篇
- 二零二五年度人工智能伦理与隐私保护合同法解读
- 2025年度新型木材加工钢材买卖居间服务与技术支持合同4篇
- 特鲁索综合征
- 《向心力》 教学课件
- 结构力学数值方法:边界元法(BEM):边界元法的基本原理与步骤
- 2024年山东省泰安市高考语文一模试卷
- 工程建设行业标准内置保温现浇混凝土复合剪力墙技术规程
- 北师大版物理九年级全一册课件
- 2024年第三师图木舒克市市场监督管理局招录2人《行政职业能力测验》高频考点、难点(含详细答案)
- RFJ 006-2021 RFP型人防过滤吸收器制造与验收规范(暂行)
- 盆腔炎教学查房课件
- 110kv各类型变压器的计算单
- 新概念英语课件NCE3-lesson15(共34张)
评论
0/150
提交评论