![机器学习分析报告_第1页](http://file4.renrendoc.com/view12/M08/3D/0D/wKhkGWYm8EWAR5PyAAGVCvR-If4246.jpg)
![机器学习分析报告_第2页](http://file4.renrendoc.com/view12/M08/3D/0D/wKhkGWYm8EWAR5PyAAGVCvR-If42462.jpg)
![机器学习分析报告_第3页](http://file4.renrendoc.com/view12/M08/3D/0D/wKhkGWYm8EWAR5PyAAGVCvR-If42463.jpg)
![机器学习分析报告_第4页](http://file4.renrendoc.com/view12/M08/3D/0D/wKhkGWYm8EWAR5PyAAGVCvR-If42464.jpg)
![机器学习分析报告_第5页](http://file4.renrendoc.com/view12/M08/3D/0D/wKhkGWYm8EWAR5PyAAGVCvR-If42465.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ML-MACHINE
LEARNINGDL-DEEP
LEARNINGAI
–
ARTIFICIAL
INTELLIGENCEDS
–
DATA
SCIENCEVENKATA
REDDY
KONASANIPART-1What
is
MachineLearning?2ActivityC
l
o
s
e
y
o
u
r
e
y
e
s
a
n
d
th
i
n
k
a
b
o
u
t
tw
o
te
r
m
s
–M
a
c
h
i
n
e
L
e
a
r
n
i
n
g
a
n
d
A
r
t
i
f
i
c
i
a
l
I
n
te
l
l
i
g
e
n
c
e
.What
is
the
first
thing
that
comes
toyour
mind
when
you
hear
thesetermsMachine
LearningArtificial
Intelligence3WHAT
ARE
YOU
THINKINGABOUT
–
ROBOTS?4OR
ANY
AI
BASED
MOVIE?5HAVE
YOU
THOUGHTABOUT6MathematicsStatisticsDatasetsData
AnalysisOptimizationAlgorithmsData
MiningMachine
learning
(ML)
is
the
scientificstudy
ofalgorithms
and
statistical
models
that
computersystems
use
to
effectively
perform
a
specific
taskwithout
using
explicit
instructions,
relyingon
modelsand
inferenceinstead.OK
…WHAT
ISMACHINE
LEARNING?7WHATREALLY
IS
MACHINE
LEARNING
?-
WIKIPEDIAUsing
historical
data
to
make
futurepredictionsBuilding
models
on
historical
data
topredictionsTaking
training
data,
building
models
onthe
training
datausing
themodels
tomake
the
future
predictionsMaking
themachine
learn
the
patternsin
the
data9IN
SIMPLE
TERMS
..DATA
IS
IN
DIFFERENT
FORMSNumerical
dataImage
data
(pixel
intensities)Video
data(frames
per
second)Sounddata
(waves)Text
data
(tweets,
comments,
feedback)10APPLICATIONS
OF
NUMERICAL
DATACREDIT
RISK
MODELSIdentifying
risky
customersbefore
offering
a
loan11MARKETING
ANALYTICSDo
you
receive
any
marketingcalls?
Have
you
ever
receivedany
marketing
call
for
Audi
car?RETAIL
SALES
ANALYTICSHave
you
ever
wondered,
whyonly
you
are
gettingpromotional
offers
on
clothsand
accessories
where
as
I
amgetting
offers
on
apartments?FRAUD
ANALYTICSHow
does
a
bankdecide
thepotential
fraud
transactionsfrom
millions
of
credit
cardswipes?Face
recognition
–
Using
image
as
input
dataObject
recognition
–
Pixels
is
the
input
dataDigit
recognition
–
Using
text
as
imageSelf
Driving
Cars
–
Using
video
data
as
inputAPPLICATIONS
OFMACHINELEARNING
–IMAGES
AND
VIDEO
DATA12IMAGE
DATA
IS
ALSO
NUMERICAL
DATAS13Image
dataHuman
VisionComputer
Vision-1-1-1-1-1-1-1-10.9-0-1-1-1-1-1-1-1-1-1-1-1-1-10.310.3-1-1-1-1-1-1-1-1-1-1-1-1-011-1-1-1-1-1-1-1-1-1-1-1-1-10.810.6-1-1-1-1-1-1-1-1-1-1-1-10.510.8-1-1-1-1-1-1-1-1-1-1-1-10.110.9-0-1-1-1-1-1-1-1-1-1-1-1-011-0-1-1-1-1-1-1-1-1-1-1-1-10.910.3-1-1-1-10.510.90.1-1-1-1-10.310.9-1-1-10.111111-1-1-1-10.810.3-1-10.410.7-0-011-1-1-1-1110.1-10.110.3-1-1-010.6-1-1-1-1110.80.310.7-1-1-10.510-1-1-1-10.811110.50.20.80.810.9-1-1-1-1-1-00.8111111110.1-1-1-1-1-1-1-00.81111110.2-1-1-1-1-1-1-1-1-1-00.30.810.5-0-1-1-1-1-1Sentiment
AnalysisExtraction
of
key
topics
in
the
dataDocument
ClassificationAPPLICATIONS
ON
TEXTDATA14PART-2What
is
Deep
Learning?15ANNANN-
Artificial
Neural
NetworkANN
is
oneof
the
technique
in
Machine
LearningANN
has
input
layer
,
hidden
layerand
output
layerFor
a
really
complex
and
nonliner
datasets
we
need
several
hiddenlayersANN
with
multiple
hidden
layers
is
known
as
deep
neural
network16ANN
with
a
single
layer
isknown
asshallow
networkANN
with
multiple
hidden
layers
is
known
as
deep
neural
networkNot
just
multiple
hiddenlayerssometimes
the
type
of
hiddenlayer
isalso
different.This
concept
of
solving
problems
with
multiplehidden
layers
is
knownas
deep
learning17DEEP
LEARNINGDEEP
VS
SHALLOW
NETWORKSA
neural
network
with
single
hidden
layeris
called
a
shallow
networkA
neural
network
with
more
than
onehidden
layer
is
called
deep
neuralnetworkshallow
networkDeep
network18DEEP
VS
SHALLOW
NETWORKSA
singlelayer
might
not
have
theflexibility
to
capture
all
the
non
linearpatterns
in
the
datashallow
networkDeep
network19A
deep
network
first
learnsthe
primitive
features
followed
by
high
level
features.
This
helps
in
building
efficient
modelsLot
of
experiments
have
shown
that
a
deep
network
with
lessparametersperforms
better
than
ashallow
networkFor
example
deep
network
with
hidden
nodes
[10,10,10,10]
mightperform
better
than
shallownetwork
with
[80]hidden
nodesDeep
neural
networks
are
amazingly
powerful.With
sufficient
number
of
hidden
layers
and
nodes,
we
can
fit
a
modelto
any
type
of
dataThey
have
the
power
to
capture
any
amount
of
non
linearity20DEEP
NEURAL
NETWORKSDEEP
LEARNINGIS
A
SUBSET
OF
MACHINE
LEARNINGMachine
LearningDeep
Learning21PART-3What
is
Artificial
Intelligence?22MACHINE
LEARNING
MODELSTraining
dataBuild
Model23MACHINE
LEARNING
MODELSNew
dataApply
ModelClass1GetPredictionThis
prediction
can
beright
or
wrong24MACHINE
LEARNING
MODELSNew
dataApply
ModelClass2GetPredictionOne
way
modelsThis
prediction
can
beright
or
wrong25AI
=MACHINE
LEARNING
MODELS
+FEEDBACK
LOOPTraining
dataModel26AI
=MACHINE
LEARNING
MODELS
+FEEDBACK
LOOPNew
dataApply
ModelClass2GetPredictionFeedback
Loop27AI
=MACHINE
LEARNING
MODELS
+FEEDBACK
LOOPUpdate
Trainingdata
based
onfeedbackUpdate
the
Modelbased
ondataPredictionFeedback
LoopClass228Manual
entry
after
goingthrough
testcases
–
mapsIndirect
feedback
collection
based
onuser
actions
for
-
User
click
vs
notclick
on
your
YouTube
adIndirect
feedback
collection
based
onactions
–
In
case
of
self
driving
car,hitting
a
wall
is
an
action.HOW
IS
FEEDBACKCOLLECTED29Self
driving
carsSIRI
/
Ok-googleAlexa
homeRecommendation
systemsImage
recognitionSpeech
recognitionSpam
filteringAPPLICATIONS
OF
AI30MACHINE
LEARNING
IS
A
SUBSET
OF
ARTIFICIALINTELLIGENCEArtificial
IntelligenceMachine
LearningDeep
Learning31PART-4What
is
Data
Science?32Data
Driven
Decision
makingMaking
sense
out
of
dataFinding
hidden
patterns
in
the
dataAnalysis
using
not
just
machinelearning
models
but
also
using
datavisualizations,
intelligent
reportsMost
of
the
techniques
and
toolsseen
indata
analysis
in
early
days
arenow
falling
under
data
scienceWHAT
IS
DATASCIENCE?33MathematicsStatisticsCodingDatabase
managementData
AnalyticsPredictive
modellingMachine
LearningDeep
LearningDATA
SCIENCE
IS
AFUSION
OF
MANYFIELDS34DATA
SCIENCE–
FOUR
MAJOR
TYPE
OF
SKILLSDatabaseAnalytics
&MLBigdataPresentation35THE
TECHNIQUES
YOU
NEED
TOKNOWDatabaseKnowledgeData
base
ManagementData
blendingQueryingData
manipulationsETLPredictive
Analytics&
MLBasic
descriptivestatisticsAdvanced
analyticsPredictive
modelingMachineLearningBig
Data
knowledgeDistributedComputingBig
Data
analyticsUnstructured
dataanalysisPresentation
SkillData
visualizationsReportdesignInsights
presentation36MACHINE
LEARNING
TOOLS
AND
SOFTWARE'SDatabase
toolsSQL/MySqlOLAP
cubesTeradataDB2/Sql
Server/
Oracle/Informix/ExadataAnalytical
toolsSAS/R/SPSS/PythonWeka/MATLAB/TensorFlow/OCRBig
Data
ToolsHadoop,
Hive,
Pig,Mahout,
Spark,
JavaPresentation
ToolsExcelTableau,
Qlikview37DATA
SCIENCE
-DESIGNATIONSDatabase
DeveloperETL
DeveloperMIS
&
DBDeveloperData
ArchitectData
EngineerData
AnalystStatisticiansBusiness
AnalystData
ScientistBigdata
DeveloperHadoop
DeveloperSoftwareEngineerMIS
AnalystReporting
AnalystBusiness
Analyst38Data
ScienceMACHINE
LEARNING
IS
A
PART
OF
DATA
SCIENCE39SArtificial
IntelligenceMachine
Learning*
These
are
individual
interpretationsDeep
LearningPART-5The
Learning
Path40FAQ
BY
DATA
SCIENCEASPIRANTSI
want
to
be
data
scientist
whattraining
should
I
take?I
already
have
knowledge
on
fewtools,
what
are
my
next
steps?What
skill
should
I
add
to
my
profileto
make
it
to
next
level?I
am
new
to
data
science,
where
can
Istart
?41You
need
training
basedon
your
skill
level.Based
on
skill
set
we
can
divide
the
whole
datascience
aspirants
into
four
categoriesBeginner
-
Completely
new
to
Data
Scienceand
MLIntermediate
-
MIS
and
Reporting
AnalystAdvanced
–
Data
Analystand
PredictiveModelerComplete
Data
Scientist
–
ML,
Hadoop,
R,Python,DL,
AICATEGORIES
OF
PROFILES42THE
LEARNING
PATHS
43Tools
&
CodingR/SAS/Python/Hadoop/WekaBasic
Statistics
andMathematicsBasic
Algorithms
-Regression,Classification
andSegmentationAdvanced
MLAlgorithms
-NeuralNetworks,
SVMs,Random
Forest
andBoostingDeep
LearningModelsCNN,
RNN
and
LSTMAIModelsDeep
Q
LearningReinforced
LearningMarkovDecisionprocessTHE
LEARNING
PATH
–
OUR
SUGGESTIONSS
44Basic
StatisticsandBasic
Algorithms
-Regression,Classification
andSegmentationAdvanced
MLAlgorithms
-NeuralNetworks,
SVMs,Random
Forest
andBoostingDeep
LearningModelsCNN,
RNN
and
LSTMAIModelsDeep
Q
LearningReinforced
LearningMarkovDecisionprocessDo
not
try
to
learn
all
the
steps
in
one
sitting.You
need
to
learn,
absorb
and
then
practisebefore
youreach
the
next
stepMathematicsTools
&
CodingR/SAS/Python/Hadoop/WekaStage-2Stage-3Stage-1THE
LEARNING
PATH
–
OUR
SUGGESTIONSS
45Basic
StatisticsandBasic
Algorithms
-Regression,Classification
andSegmentationAdvanced
MLAlgorithms
-NeuralNetworks,
SVMs,Random
Forest
andBoostingDeep
LearningModelsCNN,
RNN
and
LSTMAIModelsDeep
Q
LearningReinforced
LearningMarkovDecisionprocessR
or
Python.
Bothare
really
good.
Pick
any
one
of
themIt
also
depends
on
your
business
problemIf
youareplanning
to
learn
deep
learningthen
go
for
pythonMathematicsTools
&
CodingR/SAS/Python/Hadoop/WekaStage-2Stage-3Stage-1THE
LEARNING
PATH
–
OUR
SUGGESTIONSS
46Basic
StatisticsandBasic
Algorithms
-Regression,Classification
andSegmentationAdvanced
MLAlgorithms
-NeuralNetworks,
SVMs,Random
Forest
andBoostingDeep
LearningModelsCNN,
RNN
and
LSTMAIModelsDeep
Q
LearningReinforced
LearningMarkovDecisionprocessDo
not
start
with
stage-2
or
stage-3
directly.Strong
fundamentals
will
make
thelearningeasy
in
later
stages.MathematicsTools
&
CodingR/SAS/Python/Hadoop/WekaStage-2Stage-3Stage-1THE
LEARNING
PATH
–
OUR
SUGGESTIONSS
47Basic
StatisticsandBasic
Algorithms
-Regression,Classification
andSegmentationAdvanced
MLAlgorithms
-NeuralNetworks,
SVMs,Random
Forest
andBoostingDeep
LearningModelsCNN,
RNN
and
LSTMAIModelsDeep
Q
LearningReinforced
LearningMarkovDecisionprocessWhile
learningtheseconcepts,
try
toavoid
academic
style
courses.Look
for
the
courses
with
lot
of
hands-on
exercises
and
case
studiesMathematicsTools
&
CodingR/SAS/Python/Hadoop/WekaStage-2Stage-3Stage-1THE
LEARNING
PATH
–
OUR
SUGGESTIONSS
48Basic
StatisticsandBasic
Algorithms
-Regression,Classification
andSegmentationAdvanced
MLAlgorithms
-NeuralNetworks,
SVMs,Random
Forest
andBoostingDeep
LearningModelsCNN,
RNN
and
LSTMAIModelsDeep
Q
LearningReinforced
LearningMarkovDecisionprocessDo
not
focus
on
the
tool,
focus
on
the
technique
and
algorithmLearning
python
or
R
tool,
will
not
makeyou
a
datascientistMathematicsTools
&
CodingR/SAS/Python/Hadoop/WekaStage-2Stage-3Stage-1PART-6Course
Curriculum49FOCUS
IS
ON
FIRST
TWO
STAGESS
50Basic
StatisticsandBasic
Algorithms
-Regression,Classification
andSegmentationAdvanced
MLAlgorithms
-NeuralNetworks,
SVMs,Random
Forest
andBoostingDeep
LearningModelsCNN,
RNN
and
LSTMAIModelsDeep
Q
LearningReinforced
LearningMarkovDecisionprocessMathematicsTools
&
CodingR/SAS/Python/Hadoop/WekaStage-2Stage-3Stage-1DURATION
–
10
DAYSS
51Basic
StatisticsandBasic
Algorithms
-Regression,Classification
andSegmentationAdvanced
MLAlgorithms
-NeuralNetworks,
SVMs,Random
Forest
andBoostingDeep
LearningModelsCNN,
RNN
and
LSTMAIModelsDeep
Q
LearningReinforced
LearningMarkovDecisionprocessMathematicsTools
&
CodingR/SAS/Python/Hadoop/WekaStage-2Stage-3Stage-1TWO
PHASES52PHASE-1
(5DAYS)Python
for
data
scienceData
manipulationsin
pythonBasic
StatisticsData
validation
and
CleaningRegressionLogistic
RegressionDecision
TreesCluster
AnalysisModel
Selection
and
CrossvalidationANN
–
Artificial
Neural
networksSVM
–Support
Vector
MachinesRandom
ForestBoostingNLP
&
Text
miningTensorFlow
&
kerasDeepLearning
ModelsConvolution
Neural
NetworkRecurrent
Neural
NetworksPHASE-2
(5DAYS)100%
Hands-on
Training30
case
studies
laced
in
the
courseCreated
for
Non-
StatisticiansDatasets
from
multiple
domains,codes
files
and
in
class
exercisesTeam
assignments
and
mentoringFinal
AssessmentE-learning
material
supportCOURSE
FEATURES53PART-7Data
Science
and
Machine
Learning
MythsSMYTH-1
:
MATHEMATICSMyth-1
:
To
be
a
gooddata
scientist,you
need
to
beexceptional
atstatistics,mathematics,calculous,
algorithms
etc.,Not
necessarily.55SMYTH-2
:
PROGRAMMINGMyth-2
:
To
be
a
gooddata
scientist,you
need
to
have
exceptional
codingskillslikePython,
Java,
C++
etc.,Not
necessarily.56SMYTH-3
:
COMPLICATED
MODELSMyth-3
:Data
science
is
all
about
building
complex
predictiveandmachine
learning
models
to
solving
business
problemsNot
necessarily.57SMYTH-4
:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 无店铺零售服务项目风险识别与评估综合报告
- 2025年刮墨刀项目效益评估报告
- 办公用地申请书
- DB2201-T 52-2023 枝角类室内高密度培养技术规范
- 100以内加减乘除能力提升练习活动1000题(可打印)
- 一建《建设工程项目管理》试题库资料练习含【答案】卷32
- 知识产权在医疗科技创新中的保障作用
- 校园绿化与生态教育的融合创新
- 电子商务平台数据监测全解析
- 电机控制技术在航空航天领域的商业价值
- CQJTG∕T D09-2021 重庆市高速公路特殊路段交通安全设施设计指南
- 东洋(TOYO)VF64C系列变频器中文说明书
- 狄更斯与《圣诞颂歌》课件
- 康复科院感工作年度总结
- 北师大版六年级数学下册全册教材解读课件
- 人教版七年级英语下册听力翻译
- DBJ41-139-2014 河南省基坑工程技术规范-(高清版)
- 幼儿园讲座地铁小知识介绍
- 隐蔽工程工验收记录(表C5-1)
- 小升初、小学生满分优秀作文汇编100篇
- 次声波在临床医学及麻醉中的作用 次声波在临床麻醉中的作用
评论
0/150
提交评论