深度学习可复现性和可解释人工智能(XAI)_第1页
深度学习可复现性和可解释人工智能(XAI)_第2页
深度学习可复现性和可解释人工智能(XAI)_第3页
深度学习可复现性和可解释人工智能(XAI)_第4页
深度学习可复现性和可解释人工智能(XAI)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

DeepLearningReproducibilityandExplainableAI(XAI)

ResultsofBSI'sprojectresearch

Documenthistory

Version

Date

Editor

Description

1.0

02.03.2022

Dr.Leventi-Peetz

TransferredfromLaTeX

FederalOfficeforInformationSecurityPostBox200363

D-53133Bonn

Phone:+49228999582-0

E-Mail:

anastasia-maria.leventi-peetz@bsi.bund.de

Internet:

https://www.bsi.bund.de

©FederalOfficeforInformationSecurity2022

Abstract

FederalOfficeforInformationSecurity

3

Abstract

ThenondeterminismofDeepLearning(DL)trainingalgorithmsanditsinfluenceontheexplainabilityofneuralnetwork(NN)modelsareinvestigatedinthisworkwiththehelpofimageclassificationexamples.Todiscusstheissue,twoconvolutionalneuralnetworks(CNN)havebeentrainedandtheirresultscompared.Thecomparisonservestheexplorationofthefeasibilityofcreatingdeterministic,robustDLmodelsanddeterministicexplainableartificialintelligence(XAI)inpractice.Successesandlimitationofallherecarriedouteffortsaredescribedindetail.Thesourcecodeoftheattaineddeterministicmodelshasbeenlistedinthiswork.Reproducibilityisindexedasadevelopment-phase-componentoftheModelGovernanceFramework,proposedbytheEUwithintheirexcellenceinAIapproach.Furthermore,reproducibilityisarequirementforestablishingcausalityfortheinterpretationofmodelresultsandbuildingoftrusttowardstheoverwhelmingexpansionofAIsystemsapplications.Problemsthathavetobesolvedonthewaytoreproducibilityandwaystodealwithsomeofthem,areexaminedinthiswork.

TableofContents

FederalOfficeforInformationSecurity

5

TableofContents

Documenthistory 2

Abstract 3

Introduction 6

ReproducibleMLmodels

6

Factorshinderingtrainingreproducibility

6

Organizationandaimofthiswork

7

Grad-CAMNN-Explanations 9

NetworkarchitecturesandHW

9

InceptionV3

10

Soundnessandstabilityofexplanations

11

Xception

13

InceptionV3vs.Xception

15

Self-trainedModels 18

DeterministicConvNet

18

DeterministicminiXception

21

Conclusionsandfuturework 24

References 26

Introduction

6

BundesamtfürSicherheitinderInformationstechnik

Introduction

ReproducibleMLmodels

ThereproducibilityofMLmodelsisasubjectofdebatewithmanyaspectsunderinvestigationbyresearchersandpractitionersinthefieldofAIalgorithmsandtheirapplications.Reproducibilityreferstotheabilitytoduplicatepriorresultsusingthesamemeansasusedintheoriginalwork,forexamplethesameprogramcodeandrawdata.However,MLexperienceswhatiscalledareproducibilitycrisisanditisdifficulttoreproduceimportantMLresults,somealsodescribedaskeyresults[

22

,

21

,

13

,

29

].Experiencereportsrefertomanypublicationsasbeingnotreplicable,orbeingstatisticallyinsignificant,orsufferingfromnarrativefallacy[

5

].EspeciallyDeepReinforcementLearninghasreceivedalotofattentionwithmanypapers[

5

,

27

,

25

,

14

]andblogposts[

24

]investigatingthehighvarianceofsomeresults.BecauseitisdifficulttodecidewhichMLresultsaretrustworthyandgeneralizetoreal-worldproblems,theimportanceofreproducibilityisgrowing.Acommonproblemconcerningreproducibilityiswhenthecodeisnotopen-sourced.Thereviewof400publicationsoftwotopAIconferencesinthelastyears,showedthatonly6%ofthemsharedtheusedcode,onethirdsharedthedataonwhichalgorithmsweretestedandhalfsharedpseudocode[

16

,

23

].Initiativeslikethe2019ICLRreproducibilitychallenge[

34

]andtheReproducibilityChallengeofNeurIPS2019[

38

,

35

],thatinvitemembersoftheAIcommunitytoreproducepapersacceptedattheconferenceandreportontheirfindingsviatheOpenReviewplatform(

/group?

id=NeurIPS.cc/2019/Reproducibility_Challenge

),demonstrateanincreasingintentiontomakemachinelearningtrustworthybymakingitcomputationallyreproducible[

19

].Reproducibilityisimportantformanyreasons:Forinstance,toquantifyprogressinML,ithastobecertainthatnotedmodelimprovementsoriginatefromtrueinnovationandarenotthesheerproductofuncontrolledrandomness[

5

].Alsofromthedevelopmentpointofview,adaptationsofmodelstochangingrequirementsandplatformsarehardlypossibleintheabsenceofbaselineorreferencecode,whichworksaccordingtoagreeduponexpectations.Thelattercouldgettransparentlyextendedorchangedbeforetestedtomeetnewdemands.ForMLmodels,itisthesonamedinferentialreproducibilitywhichisimportantasarequirementandstatesthatwhentheinferenceprocedureisrepeated,theresultsshouldbequalitativelysimilartothoseoftheoriginalprocedure[

13

].However,trainingreproducibilityisalsoanecessarysteptowardstheformationofasystematicframeworkforanend-to-endcomparisonofthequalityofMLmodels.ToourknowledgesuchaframeworkdoesnotyetexistanditshouldbeessentialifcriteriaandguaranteesregardingthequalityofMLmodelshavetobeprovided.Securityandsafetyconsiderationsareinevitablyinvolved:Forinstance,whenamodelexecutesapureclassificationexercise,decidingforexampleifatestimageshowsacatoradog,itisnotnecessarilycriticalwhenthemodel’sdecisionturnsouttobewrong.Ifhoweverthemodelisincorporatedintoaclinicaldecision-makingsystem,thathelpsmakepredictionsaboutpathologicconditionsonthebasisofpatients’data,orispartofanautomateddrivingsystem(ADS)whichactivelydecidesifavehiclehastoimmediatelystoporkeepspeeding,thenthedecisionhastobeverifiablycorrectandunderstandableateverystageofitsformation.TheincreasingdependencyonMLfordecisionmakingleadstoanincreasingconcernthattheintegrationofmodelswhichhavenotbeenfullyunderstoodcanleadtounintendedconsequences[

20

].

Factorshinderingtrainingreproducibility

Itiswellknownthatwhenamodelistrainedagainwiththesamedataitcanproducedifferentpredictions[

8

,

7

].Tothereasonsthatmakereproducibilitydifficulttherebelong:differentproblemformulations,missingcompatibilitybetweenDNN-architectures,missingappropriatebenchmarks,differentOS,differentnumericallibraries,systemarchitecturesorsoftwareenvironmentslikethePythonversionetc.Reproducibilityasabasisforthegenerationofsoundexplanationsandinterpretationsofmodeldecisionsisalsoessentialinviewoftheimmensecomputationaleffortandcostsinvolvedwhenapplyingoradaptingalgorithms,oftenwithoutspecificknowledgeaboutthehardware,theparameter-tuningandthe

Introduction

FederalOfficeforInformationSecurity

7

energyconsumptiondemandedforthetrainingofamodel,whichattheendmightleadtoinconclusiveresults.Furthermore,itisalsodifficulttotrainmodelstoexpectedaccuracyevenwhentheprogramcodeandthetrainingdataareavailable.ChangesinTensorFlow,inGPUdrivers,orevenslightchangesinthedatasets,canhurtaccuracyinsubtleways[

46

,

45

].Inaddition,manyMLmodelsaretrainedonrestricteddatasets,forexamplethosecontainingsensitivepatientinformation,thatcan’tbemadepubliclyavailable[

1

].Whenprivacybarriersareimportantconsiderationsfordatasharing,socalledreplicationprocesseshavetobeused,toinvestigatetheextenttowhichtheoriginalmodelgeneralizestonewcontextsandnewdatapopulations,anddecidewhethersimilarconclusionstothoseoftheoriginalmodelcanbedelivered.However,thereexistalsocertainuniquechallengeswhichMLreproducibilityposes.ThetrainingofMLmodelsmakesuseofrandomness,especiallyforDL,usuallyemployingstochasticgradientdescent,regularizationtechniquesetc.[

3

].Randomizedproceduresresultindifferentfinalvaluesforthemodelparameterseverytimethecodeisexecuted.Onecansetallpossiblerandomseeds,howeveradditionalparameters,commonlynamedsilentparameters,associatedwithmoderndeeplearning,havebeenfoundtoalsohaveaprofoundinfluenceonbothmodelperformanceandreproducibility.High-levelframeworkslikeKerasarereportedtohidelow-levelimplementationdetailsandcomewithimplicithyperparameterchoicesalreadymadefortheuser.Alsohiddenbugsinthesourcecodecanleadtodifferentoutcomesindependenceoflinkedlibrariesanddifferentexecutionenvironments.Moreover,thecosttoreproducestate-of-the-artdeeplearningmodelsisoftenextremelyhigh.Innaturallanguageprocessing(NLP),transformersrequirehugeamountsofdataandcomputationalpowerandcanhaveinexcessof100billiontrainableparameters.Largeorganizationsproducemodels(likeOpenAI’sGPT-3)whichcancostmillionsofdollarsincomputingpowertotrain[

1

,

3

,

12

].Tofindthetransformerthatachievesthebestpredictiveperformanceforagivenapplication,meta-learnerstestthousandsofpossibleconfigurations.Thecosttoreproduceoneofthemanypossibletransformermodelshasbeenestimatedtorangefrom1millionto

3.2millionUSDwithusageofpubliclyavailablecloudcomputingresources[

39

,

3

].ThisprocessisestimatedtogenerateCO2emissionswithavolumewhichamountstothefivefoldofemissionsofanaveragecar,generatedoveritsentirelifetimeontheroad.Theenvironmentalimplicationsattachedtoreproducibilityendeavorsofthisrangearedefinitelyprohibitive[

3

].Aspossiblesolutiontothisproblem,therehasbeenproposedtheoptiontoletexpensivelargemodelsgetproducedonlyonce,whileadaptationsofthesemodelsforspecialapplicationsshouldbemadetransparentandreproduciblewiththeuseofmoremodestresources[

3

].

Organizationandaimofthiswork

ThemajorityofmethodsforexplainableAIareattributebased,theyhighlightthosedatafeatures(attributes),thatmostlycontributedtothemodel’spredictionordecision.Convolutionalneuralnetworks(CNN,orConvNet)arestate-of-the-artarchitectures,forwhichvisualexplanationscanbeproduced,forexamplewiththeGradient-weightedClassActivationMappingmethod(Grad-CAM)[

37

,

11

],whichisalsothemethodusedinthiswork.Inthesecondpartofthiswork,Grad-CAMexplanationsfortwopre-trainedandestablishedCNNmodels,whichuseTensorFlow,willbediscussedwithfocusonthedifferencesoftheirresults,whenthesametest-dataaregivenasinput.Itiswellknownthatwhendifferentexplainabilitymethodsareappliedonaneuralnetwork,differentresultsaretobeexpected.Thefactthatasingleexplainabilitymethod,whenappliedontwosimilarCNN-architectures,canproducedifferentresultsforthesametest-data,hasreceivedlessattentionintheliteraturebutisworthtoanalyzeinthereproducibilitycontext.Inthethirdpart,theownimplementation,trainingandresultsoftworelativelysimpleCNNmodelsarediscussed.DifferencesoftheGrad-CAM-explanationsforidenticalimagesclassifiedwiththesetwonetworksareanalyzed,withspecialfocusontheinfluenceofthecomputinginfrastructureonthemodelexecution.TheeffortstorenderthesetwomodelsdeterministicaredescribedinSection

3

indetail,againwithspecialfocusontheinfluenceofthecomputinginfrastructureontheresults.Successandlimitationsarenoted,thepartlyachieveddeterministiccodeislisted.ItisworthmentioningthatdifferentbehaviorsacrossversionsofTensorFlow,aswellasacrossdifferentcomputationalframeworksaredocumentedtobenormallyexpected.TensorFlowwarnsthatfloatingpointvaluescomputedbyops,maychangeatanytimeandusersshouldrelyonlyonapproximateaccuracyandnumericalstability,notonthe

Introduction

8

BundesamtfürSicherheitinderInformationstechnik

specificbitscomputed.Therecouldbefoundnoexperiencereports,astohowachangeofspecificbitscouldinfluenceMLresults,forinstanceinworstcasebyalteringthenetwork’sclassificationoritsexplanation,orboth.AccordingtoTensorFlow,changestonumericalformulasinminorandpatchreleases,shouldresultincomparableorimprovedaccuracyofspecificformulas,withthecautionthatthismightdecreasetheaccuracyfortheoverallsystem.AlsomodelsimplementedinoneversionofTensorFlow,cannotrunwithnextsubversionsandversionsofTensorFlow.Thereforepublishedcodewhichwasonceprovedtowork,ispossiblynottouseagainwithinshorttimeafteritscreation.Torunmorethanonesubversionsonthesamesystem,whenusinggraphicHWsupport,wasnotpossible.ThisworkaimsatdrawingattentiontothechallengesthatadheretocreatingreproducibletrainingprocessesinDeepLearninganddemonstratespracticalstepstowardsreproducibility,discussingtheirpresentlimitations.InSection

4

conclusionsofthisworkandviewstowardsfutureinvestigationsinthesamedirectionarepresentedinasummary.Ithastobenotedthattheimpactofwhatiscalledunderspecification,wherebythesametrainingprocessesproducesmultiplemachine-learningmodelswhichdemonstratedifferencesintheirperformance,isoutofscopeofthiswork[

18

].

Grad-CAMNN-Explanations

FederalOfficeforInformationSecurity

9

Grad-CAMNN-Explanations

NetworkarchitecturesandHW

Convolutionalneuralnetworks,originallydevelopedfortheanalysisandclassificationofobjectsindigitalimages,representthecoreofmoststate-of-the-artcomputervisionsolutionsforawidevarietyoftasks[

41

].AbriefbutcomprehensivehistoryofCNNcanbefoundinmanysources,forexamplein[

9

],wherebythetendencyhasalwaysbeentowardsmakingCNNincreasinglydeeper.DevelopmentsofthelastyearshaveledtotheInceptionarchitecture,whichincorporatesthesocalledInceptionmodules,thatexistalreadyinseveraldifferentversions.Anewarchitecture,whichinsteadofstacksofsimpleconvolutionalnetworks,containsstacksofconvolutionsitself,wasproposedbyFrançoisCholletwithhisExtremeInceptionorXceptionmodel.Xceptionwasprovedtobecapableoflearningricherrepresentationswithlessparameters[

9

].CholletdeliveredtheXceptionimprovementstotheInceptionfamilyofNN-architectures,byentirelyreplacingInceptionmoduleswithdepthwiseseparableconvolutions.Xceptionalsousesresidualconnections,placedinallflowsofthenetwork[

9

,

17

].Theroleofresidualswasobservedasespeciallyimportantfortheconvergenceofthenetwork[

44

],howeverCholletmoderatesthisimportance,becausenon-residualmodelshavebeenbenchmarkedwiththesameoptimizationconfigurationastheresidualones,whichleavesthepossibilityopen,thatanotherconfigurationmighthaveprovedthenon-residualversionbetter[

9

].Finally,thebuildingoftheimprovedXceptionmodelswasmadepossiblebecauseanefficientdepthwiseconvolutionimplementationbecameavailableinTensorFlow.TheXceptionarchitecturehasasimilarnumberofparametersasInceptionV3.ItsperformancehoweverhasbeenfoundtobebetterthanthatofInception,accordingtotestsontwolarge-scaleimageclassificationtasks[

9

].Forpracticaltestsinthiswork,InceptionV3andXceptionhavebeenchosenforresultscomparisons.ThetwonetworksarepretrainedonatrimmedlistoftheImageNetdataset,soastobeabletorecognizeonethousandnon-overlappingobjectclasses[

9

].

InceptionV3

Theexactdescriptionofthenetwork,itsparametersandperformancearegivenintheworkofChristianSzegedy[

42

].Thedescriptionofthetraininginfrastructurereferstoasystemof50replicas,(probablyidenticalsystems),runningeachonaNVidiaKeplerGPU,withbatchsize32,for100epochs.Thetimedurationofeachepochisnotgiven.

Xception

Chollethasused60NVIDIAK80GPUsforthetraining,whichtookadurationof3daystime.Thenumberofepochsisnotgiven.Thenetworkandtechnicaldetailsaboutthetrainingarelistedintheoriginalwork[

9

].

Xceptionhasasimilarnumberofparameters(ca.23million)asInceptionV3(ca.24million).TheHWexecutionenvironmentsemployedfortheheredescribedexperimentsarethefollowing:

HW-1:GPU:NVIDIATITANRTX:24GB(GDDR6),576NVIDIATuringmixed-precisionTensorCores,4608CUDACores.

HW-2:CPU:AMDEPYC7502P32-Core,SMT,2GHz(T:2.55GHz),RAM128GB.

HW-3:GPU:NVIDIAGeForceRTX2060:6GB(GDDR6),240NVIDIATuringmixed-precisionTensorCores,1920CUDACores.

HW-4:CPU:AMDRyzenThreadripper3970X32-Core,SMT,3.7GHz(T:4.5GHz),RAM256GB.

HW-5:CPU:AMDRyzen75800X8-Core,SMT,3.8GHz(T:4.7GHz),RAM64GB.

EachofthepretrainedmodelsisverifiedtodeliverthesameresultsforallhereconsideredCPUorGPUdifferentexecutionenvironments.Theclassificationsandtheaccordingnetworkexplanationsaredeterministicwhenperformedunderlaboratoryconditions,asalsoexpected.Plausibilityandstabilityissuesoftheexplanationswillbementionedparalleltothetests.

Grad-CAMNN-Explanations

10

BundesamtfürSicherheitinderInformationstechnik

InceptionV3

Inthispartexamplesofpredictions,calculatedwiththeInceptionV3networkarediscussed.InFig.

1

(a)and

(b)respectively,therearedepictedactivationheatmapswhichhavebeenproducedtoidentifythoseregionsoftheimagechow-cat,thatcorrespondtothedog(“chow”)andthecat(“tabby”)respectively.IdenticalrespectiveaccuracieshavebeencalculatedforeachclassificationindependentoftheemployedHW,aswasverifiedbythetestsperformedwithallHW-environmentslistedattheendofsection

2.1

.The“chow”hasbeenpredictedwith30%probabilityandstandsinthefirstplaceonthetop-predictions-list,whilethecatgetsthethirdpositionwithaprobabilityof2.4%.

(a) (b)

Figure1:chow-cat:Grad-CAMexplanationsofInceptionV3fortheidentificationofthedog“chow”(a),inthefirstplaceonthetop-predictions-listandthecat“tabby”(b),inthethirdplaceonthetop-predictions-list.Thesecondplaceoccupiesa“Labradordog”.

InFig.

2

,heatmapsproducedbytheidentificationofthe“cockerspaniel”(a),the“toypoodle”(b),andthe“Persiancat”(c)respectively,havebeendemonstratedfortheimagespaniel-kitty.

(a) (b) (c)

Figure2:spaniel-kitty:Grad-CAMexplanationofInceptionV3fortheidentificationofthe“cockerspaniel”(a),the“toypoodle”(b)andthe“Persiancat”(c),see

Table1

.

Grad-CAMNN-Explanations

Class

HW-2

HW-1

1 cockerspaniel

0.56762594

0.56761914

2 toypoodle

0.08013367

0.08014054

3 clumber

0.02106595

0.02107035

4 DandieDinmont

0.01964365

0.01964012

5 Pekinese

0.01867950

0.01868443

6 miniaturepoodle

0.01846011

0.01846663

7 Blenheimspaniel

0.01425239

0.01424699

8 Maltesedog

0.01124849

0.01124578

9 Chihuahua

0.01103328

0.01103479

10 Norwichterrier

0.00741338

0.00741514

11 Sussexspaniel

0.00703137

0.00703068

12 Yorkshireterrier

0.00689254

0.00689154

13 Norfolkterrier

0.00662250

0.00662296

14 Lhasa

0.00609926

0.00609862

15 Pomeranian

0.00608485

0.00608792

16 Persiancat

0.00489533

0.00489470

17 goldenretriever

0.00428663

0.00428840

Table1:InceptionV3:ClassificationProbabilitiesfortheimagespaniel-kitty,seeFig.

2

.

In

Table1

therearelistedthescoresofthefirst17classesonthetop-predictions-list,ascalculatedintwoHWexecutions(HW-1,HW-2).Thepredictionscoresarealmostidentical,asisobviousbycomparingthecolumnsin

Table1

,whileinthefewcases,whenslightdifferencesexistintheprobabilityvalues,thesedifferencesappearonlyafterthefourthdecimalplace.The“cockerspaniel”isthetoppredictionandrepresentsactuallythecorrectclassificationofthedograce,predictedwithaprobabilityofalmost57%,whilethe“Persiancat”inplace16ofthelist,whichisalsoacorrectprediction,hasaprobabilityofapproximately0.5%.The“toypoodle”with8.0%probabilitystandsinthesecondplaceonthelist,whiletherestoflistplaces,downtoplacesixteenofthe“Persiancat”,arealloccupiedbydograces(see

Table1

).

Soundnessandstabilityofexplanations

Acarefulobservationofthedeliverednetworkexplanationsshowsthattheyarepartlyarbitraryandhardlyintuitive,andthisindependentlyofawrong,orrightclassprediction.Forexample,thenetworkreasoningbehindthe“toypoodle”classificationinFig.

2

(b),whichiswrongasfarastheraceofthedogisconcerned,butrightasfarastheanimalcategoryidentified(adog),cannotbenotedassound.Themainreasonisbecausethemostactivated,andthereforethemostrelevanttothetargetidentificationregion(markedred),pointstoapartoftheimagethatliesinemptyspace,beyondthecontourofthetarget.Themarkedredregionliesclosetowhatonecoulddescribeasagenericfeature,thepaws,whichiscommontoavarietyofanimals.Atoogenericfeatureofferslittleconfidenceinbeingagoodexplanation,ifassumedthatitisonlytheaccuracyofthefeature’slocalizationintheimagethatfails.Besides,thealgorithmcouldhavefocusedonthevicinityofthepawsoutofreasonsnotdirectlyassociatedwiththerecognitionofthe“poodle”.Observingthattheexplanationfortheidentificationofthe“Persiancat”,seeFig.

2

(c),highlightsthesamepaws,makestheunambiguityordefinitenessoftheexplanationsquestionable.Importantisalsotheinvestigationofthestabilityandconsistencyofthenetwork’sexplanations,astheyrelatetothereproducibilityofthenetworktoo.Forexample,itwouldbeexpectedthatanetworkwhichconcentratedonthedog’sheadtoexplainthefirstplaceofthetop-predictions-list,the“cockerspaniel”inFig.

2

(a),wouldprobablyalsopicktheheadtomainlyidentifythesecondmostprobableclassificationonthelist,whichthe“toypoodle”,seeninFig.

2

(b).Thisishowevernotthecase,whichmakestheconsistencybehindthelogicofexplanationsdoubtful.Obviously,thecat’sheadalsoreceiveshardlyanyattentionfortheexplanationoftherecognitionofthecatinFig.

2

(c).Itisnotpossibletoidentifysomecertainstrategywhichthenetwork

FederalOfficeforInformationSecurity 11

12

BundesamtfürSicherheitinderInformationstechnik

Grad-CAMNN-Explanations

consistentlyemploysinordertoexplainclassifications,inthiscaseofanimals.Forfurtherinvestigations,asmallpartoftheimagespaniel-kitty,namelythepartcontainingthepaws,hasbeenremovedfromtheimageandthetop-predictions-listhasbeencalculatedagain.Withthenewtestimage,spaniel-kitty-paws-cutasinput,the“cockerspaniel”keepsthefirstplaceonthetop-predictions-list,see

Table2

,howeverthe“Persiancat”climbesnowfromplace16toplace2withaclassificationprobabilityrisingfrom0.5%to30%,whilethe“toypoodle”fallsdowntotheplace4ofthelist.

Class

HW-2

HW-1

1 cockerspaniel

0.43387938

0.43393657

2 Persiancat

0.03001592

0.03000891

3 Pekinese

0.02654952

0.02654130

4 toypoodle

0.01810920

0.01810851

5 DandieDinmont

0.01457902

0.01457707

6 Sussexspaniel

0.01415453

0.01415372

7 Goldenretriever

0.01363987

0.01363916

8 Miniaturepoodle

0.01088122

0.01088199

Table2:InceptionV3:ClassificationProbabilitiesfortheimagespaniel-kitty-paws-cut.

In

Table2

,thenewtop-fourpredictedclassesandtheirnewscoresaredisplayed.Therearenogreatchangesintheexplanationconcerningthe“cockerspaniel”forthemodifiedimage,theheadbeingtheparthighlightedagain.Howeverthevisualexplanationsfortheidentificationofthe“toypoodle”andthe“cat”havechangedconsiderably,asinFig.

3

tosee.

(a) (b) (c)

Figure3:spaniel-kitty-paws-cut:Grad-CAMexplanationofInceptionV3fortheidentificationofthe“cockerspaniel”(a),the“toypoodle”(b)andthe“Persiancat”(c),whenthepawsareremovedfromtheimage(compareresultsofFig.

2

).

The“toypoodle”isnowoverlayedbyadoubleheatspot,aminoroneattheendofthecat’sbodyandthemainonetotherightofthecat’shead,bothlyingoutsidethecontouroftherecognized“poodle”,seeFig.

3

(b).Althoughinthiscasetheclassificationiscorrect,theexplanationdoesn’tmakesenseatall,becausetheactivationregionliesentirelyoutsidethetarget(“toypoodle”).Onecouldarguethatatleasttheexplanationforthe“Persiancat”inFig.

3

(c)hasbeenimproved,incomparisontotheunchangedimage.Thehotactivationregionapproachesnowthecat’sheadinsteadofthepawswhichismorecharacteristicofthetarget.However,aconsiderablepartoftheclassactivationmapping(markedred),stillliesbeyondthecontourofthecatandtherefore,atleastthepositionoftherecognizedtarget,canbedescribedasnotaccurateorevenwrong.InceptionV3deliversidenticalresults,withrespecttochangingexecutionenvironments,thereforetheexplanationsandclassificationsofthenetworkareprovedtobedeterministic

FederalOfficeforInformationSecurity

13

Grad-CAMNN-Explanations

underlaboratoryconditions,thatiswhennointentionalorunintentionalperturbationsareinsertedtothetestdata.

Xception

Inanalogyto

2.2

,objectdetectionsandtheirexplanationscalculatedwiththeXceptionnetworkareherediscussed.InFig.

4

(a)and(b)therearepresentedtheactivationheatmaps,producedbythenetworkfortheidentificationoftheimageregionsthatcorrespondtothe“dog”(“chow”),andthe“cat”respectively,(hereidentifiedas“Egyptiancat”,whereasInceptionV3identifiedthecatasa“Tabbycat”,compareFig.

1

).

(a)“chow” (b)“Egyptian_cat”

Figure4:chow-cat:Grad-CAMexplanationsofXceptionfortheidentificationofthe“chow”(a),inthefirstplaceofthetop-predictions-listandthe“Egyptiancat”(b),inthesecondplace.Thirdonthelististhe“tigercat”andfourththe“tabbycat”.Foracomparison,theorderofexplanationsgeneratedbyInceptionV3isgiveninthecaptionofFig.

1

.

InFig.

5

theactivationmapscorrespondingtotheidentificationofthe“cockerspaniel”,the“Frenchbulldog”,the“toypoodle”andthe“Persiancat”respectivelyaredemonstrated.SimilarlytotheInceptionV3case,describedintheprevioussection,allpredictionscoresarealmostidenticalbetweenallHWenvironmentexecutions.

Grad-CAM

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论