版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DeepLearningReproducibilityandExplainableAI(XAI)
ResultsofBSI'sprojectresearch
Documenthistory
Version
Date
Editor
Description
1.0
02.03.2022
Dr.Leventi-Peetz
TransferredfromLaTeX
FederalOfficeforInformationSecurityPostBox200363
D-53133Bonn
Phone:+49228999582-0
E-Mail:
anastasia-maria.leventi-peetz@bsi.bund.de
Internet:
https://www.bsi.bund.de
©FederalOfficeforInformationSecurity2022
Abstract
FederalOfficeforInformationSecurity
3
Abstract
ThenondeterminismofDeepLearning(DL)trainingalgorithmsanditsinfluenceontheexplainabilityofneuralnetwork(NN)modelsareinvestigatedinthisworkwiththehelpofimageclassificationexamples.Todiscusstheissue,twoconvolutionalneuralnetworks(CNN)havebeentrainedandtheirresultscompared.Thecomparisonservestheexplorationofthefeasibilityofcreatingdeterministic,robustDLmodelsanddeterministicexplainableartificialintelligence(XAI)inpractice.Successesandlimitationofallherecarriedouteffortsaredescribedindetail.Thesourcecodeoftheattaineddeterministicmodelshasbeenlistedinthiswork.Reproducibilityisindexedasadevelopment-phase-componentoftheModelGovernanceFramework,proposedbytheEUwithintheirexcellenceinAIapproach.Furthermore,reproducibilityisarequirementforestablishingcausalityfortheinterpretationofmodelresultsandbuildingoftrusttowardstheoverwhelmingexpansionofAIsystemsapplications.Problemsthathavetobesolvedonthewaytoreproducibilityandwaystodealwithsomeofthem,areexaminedinthiswork.
TableofContents
FederalOfficeforInformationSecurity
5
TableofContents
Documenthistory 2
Abstract 3
Introduction 6
ReproducibleMLmodels
6
Factorshinderingtrainingreproducibility
6
Organizationandaimofthiswork
7
Grad-CAMNN-Explanations 9
NetworkarchitecturesandHW
9
InceptionV3
10
Soundnessandstabilityofexplanations
11
Xception
13
InceptionV3vs.Xception
15
Self-trainedModels 18
DeterministicConvNet
18
DeterministicminiXception
21
Conclusionsandfuturework 24
References 26
Introduction
6
BundesamtfürSicherheitinderInformationstechnik
Introduction
ReproducibleMLmodels
ThereproducibilityofMLmodelsisasubjectofdebatewithmanyaspectsunderinvestigationbyresearchersandpractitionersinthefieldofAIalgorithmsandtheirapplications.Reproducibilityreferstotheabilitytoduplicatepriorresultsusingthesamemeansasusedintheoriginalwork,forexamplethesameprogramcodeandrawdata.However,MLexperienceswhatiscalledareproducibilitycrisisanditisdifficulttoreproduceimportantMLresults,somealsodescribedaskeyresults[
22
,
21
,
13
,
29
].Experiencereportsrefertomanypublicationsasbeingnotreplicable,orbeingstatisticallyinsignificant,orsufferingfromnarrativefallacy[
5
].EspeciallyDeepReinforcementLearninghasreceivedalotofattentionwithmanypapers[
5
,
27
,
25
,
14
]andblogposts[
24
]investigatingthehighvarianceofsomeresults.BecauseitisdifficulttodecidewhichMLresultsaretrustworthyandgeneralizetoreal-worldproblems,theimportanceofreproducibilityisgrowing.Acommonproblemconcerningreproducibilityiswhenthecodeisnotopen-sourced.Thereviewof400publicationsoftwotopAIconferencesinthelastyears,showedthatonly6%ofthemsharedtheusedcode,onethirdsharedthedataonwhichalgorithmsweretestedandhalfsharedpseudocode[
16
,
23
].Initiativeslikethe2019ICLRreproducibilitychallenge[
34
]andtheReproducibilityChallengeofNeurIPS2019[
38
,
35
],thatinvitemembersoftheAIcommunitytoreproducepapersacceptedattheconferenceandreportontheirfindingsviatheOpenReviewplatform(
/group?
id=NeurIPS.cc/2019/Reproducibility_Challenge
),demonstrateanincreasingintentiontomakemachinelearningtrustworthybymakingitcomputationallyreproducible[
19
].Reproducibilityisimportantformanyreasons:Forinstance,toquantifyprogressinML,ithastobecertainthatnotedmodelimprovementsoriginatefromtrueinnovationandarenotthesheerproductofuncontrolledrandomness[
5
].Alsofromthedevelopmentpointofview,adaptationsofmodelstochangingrequirementsandplatformsarehardlypossibleintheabsenceofbaselineorreferencecode,whichworksaccordingtoagreeduponexpectations.Thelattercouldgettransparentlyextendedorchangedbeforetestedtomeetnewdemands.ForMLmodels,itisthesonamedinferentialreproducibilitywhichisimportantasarequirementandstatesthatwhentheinferenceprocedureisrepeated,theresultsshouldbequalitativelysimilartothoseoftheoriginalprocedure[
13
].However,trainingreproducibilityisalsoanecessarysteptowardstheformationofasystematicframeworkforanend-to-endcomparisonofthequalityofMLmodels.ToourknowledgesuchaframeworkdoesnotyetexistanditshouldbeessentialifcriteriaandguaranteesregardingthequalityofMLmodelshavetobeprovided.Securityandsafetyconsiderationsareinevitablyinvolved:Forinstance,whenamodelexecutesapureclassificationexercise,decidingforexampleifatestimageshowsacatoradog,itisnotnecessarilycriticalwhenthemodel’sdecisionturnsouttobewrong.Ifhoweverthemodelisincorporatedintoaclinicaldecision-makingsystem,thathelpsmakepredictionsaboutpathologicconditionsonthebasisofpatients’data,orispartofanautomateddrivingsystem(ADS)whichactivelydecidesifavehiclehastoimmediatelystoporkeepspeeding,thenthedecisionhastobeverifiablycorrectandunderstandableateverystageofitsformation.TheincreasingdependencyonMLfordecisionmakingleadstoanincreasingconcernthattheintegrationofmodelswhichhavenotbeenfullyunderstoodcanleadtounintendedconsequences[
20
].
Factorshinderingtrainingreproducibility
Itiswellknownthatwhenamodelistrainedagainwiththesamedataitcanproducedifferentpredictions[
8
,
7
].Tothereasonsthatmakereproducibilitydifficulttherebelong:differentproblemformulations,missingcompatibilitybetweenDNN-architectures,missingappropriatebenchmarks,differentOS,differentnumericallibraries,systemarchitecturesorsoftwareenvironmentslikethePythonversionetc.Reproducibilityasabasisforthegenerationofsoundexplanationsandinterpretationsofmodeldecisionsisalsoessentialinviewoftheimmensecomputationaleffortandcostsinvolvedwhenapplyingoradaptingalgorithms,oftenwithoutspecificknowledgeaboutthehardware,theparameter-tuningandthe
Introduction
FederalOfficeforInformationSecurity
7
energyconsumptiondemandedforthetrainingofamodel,whichattheendmightleadtoinconclusiveresults.Furthermore,itisalsodifficulttotrainmodelstoexpectedaccuracyevenwhentheprogramcodeandthetrainingdataareavailable.ChangesinTensorFlow,inGPUdrivers,orevenslightchangesinthedatasets,canhurtaccuracyinsubtleways[
46
,
45
].Inaddition,manyMLmodelsaretrainedonrestricteddatasets,forexamplethosecontainingsensitivepatientinformation,thatcan’tbemadepubliclyavailable[
1
].Whenprivacybarriersareimportantconsiderationsfordatasharing,socalledreplicationprocesseshavetobeused,toinvestigatetheextenttowhichtheoriginalmodelgeneralizestonewcontextsandnewdatapopulations,anddecidewhethersimilarconclusionstothoseoftheoriginalmodelcanbedelivered.However,thereexistalsocertainuniquechallengeswhichMLreproducibilityposes.ThetrainingofMLmodelsmakesuseofrandomness,especiallyforDL,usuallyemployingstochasticgradientdescent,regularizationtechniquesetc.[
3
].Randomizedproceduresresultindifferentfinalvaluesforthemodelparameterseverytimethecodeisexecuted.Onecansetallpossiblerandomseeds,howeveradditionalparameters,commonlynamedsilentparameters,associatedwithmoderndeeplearning,havebeenfoundtoalsohaveaprofoundinfluenceonbothmodelperformanceandreproducibility.High-levelframeworkslikeKerasarereportedtohidelow-levelimplementationdetailsandcomewithimplicithyperparameterchoicesalreadymadefortheuser.Alsohiddenbugsinthesourcecodecanleadtodifferentoutcomesindependenceoflinkedlibrariesanddifferentexecutionenvironments.Moreover,thecosttoreproducestate-of-the-artdeeplearningmodelsisoftenextremelyhigh.Innaturallanguageprocessing(NLP),transformersrequirehugeamountsofdataandcomputationalpowerandcanhaveinexcessof100billiontrainableparameters.Largeorganizationsproducemodels(likeOpenAI’sGPT-3)whichcancostmillionsofdollarsincomputingpowertotrain[
1
,
3
,
12
].Tofindthetransformerthatachievesthebestpredictiveperformanceforagivenapplication,meta-learnerstestthousandsofpossibleconfigurations.Thecosttoreproduceoneofthemanypossibletransformermodelshasbeenestimatedtorangefrom1millionto
3.2millionUSDwithusageofpubliclyavailablecloudcomputingresources[
39
,
3
].ThisprocessisestimatedtogenerateCO2emissionswithavolumewhichamountstothefivefoldofemissionsofanaveragecar,generatedoveritsentirelifetimeontheroad.Theenvironmentalimplicationsattachedtoreproducibilityendeavorsofthisrangearedefinitelyprohibitive[
3
].Aspossiblesolutiontothisproblem,therehasbeenproposedtheoptiontoletexpensivelargemodelsgetproducedonlyonce,whileadaptationsofthesemodelsforspecialapplicationsshouldbemadetransparentandreproduciblewiththeuseofmoremodestresources[
3
].
Organizationandaimofthiswork
ThemajorityofmethodsforexplainableAIareattributebased,theyhighlightthosedatafeatures(attributes),thatmostlycontributedtothemodel’spredictionordecision.Convolutionalneuralnetworks(CNN,orConvNet)arestate-of-the-artarchitectures,forwhichvisualexplanationscanbeproduced,forexamplewiththeGradient-weightedClassActivationMappingmethod(Grad-CAM)[
37
,
11
],whichisalsothemethodusedinthiswork.Inthesecondpartofthiswork,Grad-CAMexplanationsfortwopre-trainedandestablishedCNNmodels,whichuseTensorFlow,willbediscussedwithfocusonthedifferencesoftheirresults,whenthesametest-dataaregivenasinput.Itiswellknownthatwhendifferentexplainabilitymethodsareappliedonaneuralnetwork,differentresultsaretobeexpected.Thefactthatasingleexplainabilitymethod,whenappliedontwosimilarCNN-architectures,canproducedifferentresultsforthesametest-data,hasreceivedlessattentionintheliteraturebutisworthtoanalyzeinthereproducibilitycontext.Inthethirdpart,theownimplementation,trainingandresultsoftworelativelysimpleCNNmodelsarediscussed.DifferencesoftheGrad-CAM-explanationsforidenticalimagesclassifiedwiththesetwonetworksareanalyzed,withspecialfocusontheinfluenceofthecomputinginfrastructureonthemodelexecution.TheeffortstorenderthesetwomodelsdeterministicaredescribedinSection
3
indetail,againwithspecialfocusontheinfluenceofthecomputinginfrastructureontheresults.Successandlimitationsarenoted,thepartlyachieveddeterministiccodeislisted.ItisworthmentioningthatdifferentbehaviorsacrossversionsofTensorFlow,aswellasacrossdifferentcomputationalframeworksaredocumentedtobenormallyexpected.TensorFlowwarnsthatfloatingpointvaluescomputedbyops,maychangeatanytimeandusersshouldrelyonlyonapproximateaccuracyandnumericalstability,notonthe
Introduction
8
BundesamtfürSicherheitinderInformationstechnik
specificbitscomputed.Therecouldbefoundnoexperiencereports,astohowachangeofspecificbitscouldinfluenceMLresults,forinstanceinworstcasebyalteringthenetwork’sclassificationoritsexplanation,orboth.AccordingtoTensorFlow,changestonumericalformulasinminorandpatchreleases,shouldresultincomparableorimprovedaccuracyofspecificformulas,withthecautionthatthismightdecreasetheaccuracyfortheoverallsystem.AlsomodelsimplementedinoneversionofTensorFlow,cannotrunwithnextsubversionsandversionsofTensorFlow.Thereforepublishedcodewhichwasonceprovedtowork,ispossiblynottouseagainwithinshorttimeafteritscreation.Torunmorethanonesubversionsonthesamesystem,whenusinggraphicHWsupport,wasnotpossible.ThisworkaimsatdrawingattentiontothechallengesthatadheretocreatingreproducibletrainingprocessesinDeepLearninganddemonstratespracticalstepstowardsreproducibility,discussingtheirpresentlimitations.InSection
4
conclusionsofthisworkandviewstowardsfutureinvestigationsinthesamedirectionarepresentedinasummary.Ithastobenotedthattheimpactofwhatiscalledunderspecification,wherebythesametrainingprocessesproducesmultiplemachine-learningmodelswhichdemonstratedifferencesintheirperformance,isoutofscopeofthiswork[
18
].
Grad-CAMNN-Explanations
FederalOfficeforInformationSecurity
9
Grad-CAMNN-Explanations
NetworkarchitecturesandHW
Convolutionalneuralnetworks,originallydevelopedfortheanalysisandclassificationofobjectsindigitalimages,representthecoreofmoststate-of-the-artcomputervisionsolutionsforawidevarietyoftasks[
41
].AbriefbutcomprehensivehistoryofCNNcanbefoundinmanysources,forexamplein[
9
],wherebythetendencyhasalwaysbeentowardsmakingCNNincreasinglydeeper.DevelopmentsofthelastyearshaveledtotheInceptionarchitecture,whichincorporatesthesocalledInceptionmodules,thatexistalreadyinseveraldifferentversions.Anewarchitecture,whichinsteadofstacksofsimpleconvolutionalnetworks,containsstacksofconvolutionsitself,wasproposedbyFrançoisCholletwithhisExtremeInceptionorXceptionmodel.Xceptionwasprovedtobecapableoflearningricherrepresentationswithlessparameters[
9
].CholletdeliveredtheXceptionimprovementstotheInceptionfamilyofNN-architectures,byentirelyreplacingInceptionmoduleswithdepthwiseseparableconvolutions.Xceptionalsousesresidualconnections,placedinallflowsofthenetwork[
9
,
17
].Theroleofresidualswasobservedasespeciallyimportantfortheconvergenceofthenetwork[
44
],howeverCholletmoderatesthisimportance,becausenon-residualmodelshavebeenbenchmarkedwiththesameoptimizationconfigurationastheresidualones,whichleavesthepossibilityopen,thatanotherconfigurationmighthaveprovedthenon-residualversionbetter[
9
].Finally,thebuildingoftheimprovedXceptionmodelswasmadepossiblebecauseanefficientdepthwiseconvolutionimplementationbecameavailableinTensorFlow.TheXceptionarchitecturehasasimilarnumberofparametersasInceptionV3.ItsperformancehoweverhasbeenfoundtobebetterthanthatofInception,accordingtotestsontwolarge-scaleimageclassificationtasks[
9
].Forpracticaltestsinthiswork,InceptionV3andXceptionhavebeenchosenforresultscomparisons.ThetwonetworksarepretrainedonatrimmedlistoftheImageNetdataset,soastobeabletorecognizeonethousandnon-overlappingobjectclasses[
9
].
InceptionV3
Theexactdescriptionofthenetwork,itsparametersandperformancearegivenintheworkofChristianSzegedy[
42
].Thedescriptionofthetraininginfrastructurereferstoasystemof50replicas,(probablyidenticalsystems),runningeachonaNVidiaKeplerGPU,withbatchsize32,for100epochs.Thetimedurationofeachepochisnotgiven.
Xception
Chollethasused60NVIDIAK80GPUsforthetraining,whichtookadurationof3daystime.Thenumberofepochsisnotgiven.Thenetworkandtechnicaldetailsaboutthetrainingarelistedintheoriginalwork[
9
].
Xceptionhasasimilarnumberofparameters(ca.23million)asInceptionV3(ca.24million).TheHWexecutionenvironmentsemployedfortheheredescribedexperimentsarethefollowing:
HW-1:GPU:NVIDIATITANRTX:24GB(GDDR6),576NVIDIATuringmixed-precisionTensorCores,4608CUDACores.
HW-2:CPU:AMDEPYC7502P32-Core,SMT,2GHz(T:2.55GHz),RAM128GB.
HW-3:GPU:NVIDIAGeForceRTX2060:6GB(GDDR6),240NVIDIATuringmixed-precisionTensorCores,1920CUDACores.
HW-4:CPU:AMDRyzenThreadripper3970X32-Core,SMT,3.7GHz(T:4.5GHz),RAM256GB.
HW-5:CPU:AMDRyzen75800X8-Core,SMT,3.8GHz(T:4.7GHz),RAM64GB.
EachofthepretrainedmodelsisverifiedtodeliverthesameresultsforallhereconsideredCPUorGPUdifferentexecutionenvironments.Theclassificationsandtheaccordingnetworkexplanationsaredeterministicwhenperformedunderlaboratoryconditions,asalsoexpected.Plausibilityandstabilityissuesoftheexplanationswillbementionedparalleltothetests.
Grad-CAMNN-Explanations
10
BundesamtfürSicherheitinderInformationstechnik
InceptionV3
Inthispartexamplesofpredictions,calculatedwiththeInceptionV3networkarediscussed.InFig.
1
(a)and
(b)respectively,therearedepictedactivationheatmapswhichhavebeenproducedtoidentifythoseregionsoftheimagechow-cat,thatcorrespondtothedog(“chow”)andthecat(“tabby”)respectively.IdenticalrespectiveaccuracieshavebeencalculatedforeachclassificationindependentoftheemployedHW,aswasverifiedbythetestsperformedwithallHW-environmentslistedattheendofsection
2.1
.The“chow”hasbeenpredictedwith30%probabilityandstandsinthefirstplaceonthetop-predictions-list,whilethecatgetsthethirdpositionwithaprobabilityof2.4%.
(a) (b)
Figure1:chow-cat:Grad-CAMexplanationsofInceptionV3fortheidentificationofthedog“chow”(a),inthefirstplaceonthetop-predictions-listandthecat“tabby”(b),inthethirdplaceonthetop-predictions-list.Thesecondplaceoccupiesa“Labradordog”.
InFig.
2
,heatmapsproducedbytheidentificationofthe“cockerspaniel”(a),the“toypoodle”(b),andthe“Persiancat”(c)respectively,havebeendemonstratedfortheimagespaniel-kitty.
(a) (b) (c)
Figure2:spaniel-kitty:Grad-CAMexplanationofInceptionV3fortheidentificationofthe“cockerspaniel”(a),the“toypoodle”(b)andthe“Persiancat”(c),see
Table1
.
Grad-CAMNN-Explanations
Class
HW-2
HW-1
1 cockerspaniel
0.56762594
0.56761914
2 toypoodle
0.08013367
0.08014054
3 clumber
0.02106595
0.02107035
4 DandieDinmont
0.01964365
0.01964012
5 Pekinese
0.01867950
0.01868443
6 miniaturepoodle
0.01846011
0.01846663
7 Blenheimspaniel
0.01425239
0.01424699
8 Maltesedog
0.01124849
0.01124578
9 Chihuahua
0.01103328
0.01103479
10 Norwichterrier
0.00741338
0.00741514
11 Sussexspaniel
0.00703137
0.00703068
12 Yorkshireterrier
0.00689254
0.00689154
13 Norfolkterrier
0.00662250
0.00662296
14 Lhasa
0.00609926
0.00609862
15 Pomeranian
0.00608485
0.00608792
16 Persiancat
0.00489533
0.00489470
17 goldenretriever
0.00428663
0.00428840
Table1:InceptionV3:ClassificationProbabilitiesfortheimagespaniel-kitty,seeFig.
2
.
In
Table1
therearelistedthescoresofthefirst17classesonthetop-predictions-list,ascalculatedintwoHWexecutions(HW-1,HW-2).Thepredictionscoresarealmostidentical,asisobviousbycomparingthecolumnsin
Table1
,whileinthefewcases,whenslightdifferencesexistintheprobabilityvalues,thesedifferencesappearonlyafterthefourthdecimalplace.The“cockerspaniel”isthetoppredictionandrepresentsactuallythecorrectclassificationofthedograce,predictedwithaprobabilityofalmost57%,whilethe“Persiancat”inplace16ofthelist,whichisalsoacorrectprediction,hasaprobabilityofapproximately0.5%.The“toypoodle”with8.0%probabilitystandsinthesecondplaceonthelist,whiletherestoflistplaces,downtoplacesixteenofthe“Persiancat”,arealloccupiedbydograces(see
Table1
).
Soundnessandstabilityofexplanations
Acarefulobservationofthedeliverednetworkexplanationsshowsthattheyarepartlyarbitraryandhardlyintuitive,andthisindependentlyofawrong,orrightclassprediction.Forexample,thenetworkreasoningbehindthe“toypoodle”classificationinFig.
2
(b),whichiswrongasfarastheraceofthedogisconcerned,butrightasfarastheanimalcategoryidentified(adog),cannotbenotedassound.Themainreasonisbecausethemostactivated,andthereforethemostrelevanttothetargetidentificationregion(markedred),pointstoapartoftheimagethatliesinemptyspace,beyondthecontourofthetarget.Themarkedredregionliesclosetowhatonecoulddescribeasagenericfeature,thepaws,whichiscommontoavarietyofanimals.Atoogenericfeatureofferslittleconfidenceinbeingagoodexplanation,ifassumedthatitisonlytheaccuracyofthefeature’slocalizationintheimagethatfails.Besides,thealgorithmcouldhavefocusedonthevicinityofthepawsoutofreasonsnotdirectlyassociatedwiththerecognitionofthe“poodle”.Observingthattheexplanationfortheidentificationofthe“Persiancat”,seeFig.
2
(c),highlightsthesamepaws,makestheunambiguityordefinitenessoftheexplanationsquestionable.Importantisalsotheinvestigationofthestabilityandconsistencyofthenetwork’sexplanations,astheyrelatetothereproducibilityofthenetworktoo.Forexample,itwouldbeexpectedthatanetworkwhichconcentratedonthedog’sheadtoexplainthefirstplaceofthetop-predictions-list,the“cockerspaniel”inFig.
2
(a),wouldprobablyalsopicktheheadtomainlyidentifythesecondmostprobableclassificationonthelist,whichthe“toypoodle”,seeninFig.
2
(b).Thisishowevernotthecase,whichmakestheconsistencybehindthelogicofexplanationsdoubtful.Obviously,thecat’sheadalsoreceiveshardlyanyattentionfortheexplanationoftherecognitionofthecatinFig.
2
(c).Itisnotpossibletoidentifysomecertainstrategywhichthenetwork
FederalOfficeforInformationSecurity 11
12
BundesamtfürSicherheitinderInformationstechnik
Grad-CAMNN-Explanations
consistentlyemploysinordertoexplainclassifications,inthiscaseofanimals.Forfurtherinvestigations,asmallpartoftheimagespaniel-kitty,namelythepartcontainingthepaws,hasbeenremovedfromtheimageandthetop-predictions-listhasbeencalculatedagain.Withthenewtestimage,spaniel-kitty-paws-cutasinput,the“cockerspaniel”keepsthefirstplaceonthetop-predictions-list,see
Table2
,howeverthe“Persiancat”climbesnowfromplace16toplace2withaclassificationprobabilityrisingfrom0.5%to30%,whilethe“toypoodle”fallsdowntotheplace4ofthelist.
Class
HW-2
HW-1
1 cockerspaniel
0.43387938
0.43393657
2 Persiancat
0.03001592
0.03000891
3 Pekinese
0.02654952
0.02654130
4 toypoodle
0.01810920
0.01810851
5 DandieDinmont
0.01457902
0.01457707
6 Sussexspaniel
0.01415453
0.01415372
7 Goldenretriever
0.01363987
0.01363916
8 Miniaturepoodle
0.01088122
0.01088199
Table2:InceptionV3:ClassificationProbabilitiesfortheimagespaniel-kitty-paws-cut.
In
Table2
,thenewtop-fourpredictedclassesandtheirnewscoresaredisplayed.Therearenogreatchangesintheexplanationconcerningthe“cockerspaniel”forthemodifiedimage,theheadbeingtheparthighlightedagain.Howeverthevisualexplanationsfortheidentificationofthe“toypoodle”andthe“cat”havechangedconsiderably,asinFig.
3
tosee.
(a) (b) (c)
Figure3:spaniel-kitty-paws-cut:Grad-CAMexplanationofInceptionV3fortheidentificationofthe“cockerspaniel”(a),the“toypoodle”(b)andthe“Persiancat”(c),whenthepawsareremovedfromtheimage(compareresultsofFig.
2
).
The“toypoodle”isnowoverlayedbyadoubleheatspot,aminoroneattheendofthecat’sbodyandthemainonetotherightofthecat’shead,bothlyingoutsidethecontouroftherecognized“poodle”,seeFig.
3
(b).Althoughinthiscasetheclassificationiscorrect,theexplanationdoesn’tmakesenseatall,becausetheactivationregionliesentirelyoutsidethetarget(“toypoodle”).Onecouldarguethatatleasttheexplanationforthe“Persiancat”inFig.
3
(c)hasbeenimproved,incomparisontotheunchangedimage.Thehotactivationregionapproachesnowthecat’sheadinsteadofthepawswhichismorecharacteristicofthetarget.However,aconsiderablepartoftheclassactivationmapping(markedred),stillliesbeyondthecontourofthecatandtherefore,atleastthepositionoftherecognizedtarget,canbedescribedasnotaccurateorevenwrong.InceptionV3deliversidenticalresults,withrespecttochangingexecutionenvironments,thereforetheexplanationsandclassificationsofthenetworkareprovedtobedeterministic
FederalOfficeforInformationSecurity
13
Grad-CAMNN-Explanations
underlaboratoryconditions,thatiswhennointentionalorunintentionalperturbationsareinsertedtothetestdata.
Xception
Inanalogyto
2.2
,objectdetectionsandtheirexplanationscalculatedwiththeXceptionnetworkareherediscussed.InFig.
4
(a)and(b)therearepresentedtheactivationheatmaps,producedbythenetworkfortheidentificationoftheimageregionsthatcorrespondtothe“dog”(“chow”),andthe“cat”respectively,(hereidentifiedas“Egyptiancat”,whereasInceptionV3identifiedthecatasa“Tabbycat”,compareFig.
1
).
(a)“chow” (b)“Egyptian_cat”
Figure4:chow-cat:Grad-CAMexplanationsofXceptionfortheidentificationofthe“chow”(a),inthefirstplaceofthetop-predictions-listandthe“Egyptiancat”(b),inthesecondplace.Thirdonthelististhe“tigercat”andfourththe“tabbycat”.Foracomparison,theorderofexplanationsgeneratedbyInceptionV3isgiveninthecaptionofFig.
1
.
InFig.
5
theactivationmapscorrespondingtotheidentificationofthe“cockerspaniel”,the“Frenchbulldog”,the“toypoodle”andthe“Persiancat”respectivelyaredemonstrated.SimilarlytotheInceptionV3case,describedintheprevioussection,allpredictionscoresarealmostidenticalbetweenallHWenvironmentexecutions.
Grad-CAM
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 右额顶叶脑出血护理查房
- wbs分解课程设计规划
- aes密码课程设计
- 护理管理学见习
- 《草房子》教案编写:角色扮演与阅读体验深化
- 《慈母情深》的视觉传达与教学实践
- 书包制作课程设计
- 中专软文营销课程设计
- 外伤性蛛膜下腔出血护理查房
- 中班角色表演课程设计
- 万物之理-爱因斯坦之梦智慧树知到期末考试答案章节答案2024年中国海洋大学
- 凝血分析仪校准规范操作流程
- 园艺植物组织培养-形考作业1-国开-参考资料
- pph管道施工方案
- 2024年高考英语复习之读后续写20篇(2023年高考真题+2024年名校模拟)
- 员工职业形象培训
- 2024年陕西高职分类考试招生考试政策宣讲课件
- GB/T 43590.502-2024激光显示器件第5-2部分:散斑对比度光学测量方法
- 【真题】2023年镇江市中考道德与法治试卷(含答案解析)
- 智鼎在线测评题库答案2024
- 2024年师德师风培训学习内容-(含多场景)
评论
0/150
提交评论