版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
TheImpactofArtificialIntelligenceonLearning,Teaching,andEducation
Policiesforthefuture
Author:Tuomi,Ilkka
Editors:Cabrera,Marcelino;Vuorikari,Riina;Punie,Yves
EUR29442EN
PAGE\*roman
ii
ThispublicationisaScienceforPolicyreportbytheJointResearchCentre(JRC),theEuropeanCommission’sscienceandknowledgeservice.Itaimstoprovideevidence-basedscientificsupporttotheEuropeanpolicymakingprocess.ThescientificoutputexpresseddoesnotimplyapolicypositionoftheEuropeanCommission.NeithertheEuropeanCommissionnoranypersonactingonbehalfoftheCommissionisresponsiblefortheusethatmightbemadeofthispublication.
Contactinformation
Address:EdificioExpo.C/IncaGarcilaso3,E-41092Seville(Spain)Email:
marcelino.cabrera@ec.europa.eu
Tel.:+34954488246
EUScienceHubhttps://ec.europa.eu/jrc
JRC113226EUR29442EN
PDF ISBN978-92-79-97257-7 ISSN1831-9424 doi:10.2760/12297
Luxembourg:PublicationsOfficeoftheEuropeanUnion,2018
©EuropeanUnion,2018
ThereusepolicyoftheEuropeanCommissionisimplementedbyCommissionDecision2011/833/EUof12December2011onthereuseofCommissiondocuments(OJL330,14.12.2011,p.39).Reuseisauthorised,providedthesourceofthedocumentisacknowledgedanditsoriginalmeaningormessageisnotdistorted.TheEuropeanCommissionshallnotbeliableforanyconsequencestemmingfromthereuse.ForanyuseorreproductionofphotosorothermaterialthatisnotownedbytheEU,permissionmustbesoughtdirectlyfromthecopyrightholders.
Allimages©EuropeanUnionunlessotherwisespecified
Howtocitethisreport:Tuomi,I.TheImpactofArtificialIntelligenceonLearning,Teaching,andEducation.Policiesforthefuture,Eds.Cabrera,M.,Vuorikari,R&Punie,Y.,EUR29442EN,PublicationsOfficeoftheEuropeanUnion,Luxembourg,2018,ISBN978-92-79-97257-7,doi:10.2760/12297,JRC113226.
Title:TheImpactofArtificialIntelligenceonLearning,Teaching,andEducation
Abstract
Thisreportdescribesthecurrentstateoftheartinartificialintelligence(AI)anditspotentialimpactforlearning,teaching,andeducation.Itprovidesconceptualfoundationsforwell-informedpolicy-orientedwork,research,andforward-lookingactivitiesthataddresstheopportunitiesandchallengescreatedbyrecentdevelopmentsinAI.Thereportisaimedforpolicydevelopers,butitalsomakescontributionsthatareofinterestforAItechnologydevelopersandresearchersstudyingtheimpactofAIoneconomy,society,andthefutureofeducationandlearning.
Contents
Preface 1
Executivesummary 2
Introduction 5
WhatisArtificialIntelligence? 7
Athree-levelmodelofactionforanalysingAIanditsimpact 7
ThreetypesofAI 10
Data-basedneuralAI 10
Logic-andknowledge-basedAI 12
RecentandfuturedevelopmentsinAI 13
Modelsoflearningindata-basedAI 15
Towardsthefuture 16
AIimpactonskillandcompetencedemand 17
SkillsineconomicstudiesofAIimpact 18
Skill-biasedandtask-biasedmodelsoftechnologyimpact 20
AIcapabilitiesandtasksubstitutioninthethree-levelmodel 21
Trendsandtransitions 22
NeuralAIasdata-biasedtechnologicalchange 23
Educationasacreatorofcapabilityplatforms 23
DirectAIimpactonadvanceddigitalskillsdemand 25
Impactonlearning,teaching,andeducation 27
Currentdevelopments 27
“NoAIwithoutUI” 28
TheimpactofAIonlearning 28
Impactoncognitivedevelopment 30
TheimpactofAIonteaching 31
AI-generatedstudentmodelsandnewpedagogicalopportunities 31
Theneedforfuture-orientedvisionregardingAI 32
Re-thinkingtheroleofeducationinsociety 32
Policychallenges 34
References 37
PAGE
11
Preface
ArtificialIntelligence(AI)iscurrentlyhighonthepoliticalandresearchagendasaroundtheworld.Withtheemergenceofeverynewtechnology,thereisalwaysbothalotofhypeandscepticismarounditsimplicationsforsocietyandtheeconomy.AlthoughacknowledgingthatthefoundationsforAIhavebeenalreadyaroundforseveraldecades,recenttechnologicalbreakthroughsareacceleratingwhatAIcoulddo.Thisstudylooksatwhatthiscouldmeanforlearning,teaching,andeducation.ItaimstoprovideacriticalreviewandprospectiveangleonrelevantAIdevelopmentsasabasisforwell-informedpolicy-orienteddiscussionsaboutthefutureofthesedomains.
ThisreportisacontributiontotheDigitalEducationActionPlan1whichforeseespolicyresearchandguidanceontheimpactandpotentialofdigitaltechnologiesineducation.ItisdoneonbehalfoftheDirectorate-GeneralforEducation,Youth,SportandCulture,authoredbyIlkkaTuomiandeditedbytheJRC.Anotherreport,appraisingAIfromdifferentperspectives,entitled"ArtificialIntelligence:AEuropeanperspective",willbereleasedsoonunderthelabelofJRCflagshipreports,providinganoverallassessmentofopportunitiesandchallengesofAIfromaEuropeanoutlook,andsupportingthedevelopmentofEuropeanactionintheglobalAIcontext.
TheJRChascarriedoutresearchonLearningandSkillsfortheDigitalErasince2005.Itaimstoprovideevidence-basedpolicysupporttotheEuropeanCommissionanditsMemberStatesonhowtoharnessthepotentialofdigitaltechnologiestoencourageinnovationineducationandtrainingpractices;improveaccesstolifelonglearning;andimpartthenew(digital)skillsandcompetencesneededforemployment,personaldevelopmentandsocialinclusion.Morethan20majorstudieshavebeenundertakenontheseissues,resultinginmorethan120differentpublications.
Recentworkhasfocusedonthedevelopmentofdigitalcompetenceframeworksforcitizens(DigComp),educators(DigCompEdu),educationalorganisations(DigCompOrg)andconsumers(DigCompConsumers).Aframeworkforopeninguphighereducationinstitutions(OpenEdu)wasalsopublishedin2016,alongwithacompetenceframeworkforentrepreneurship(EntreComp).Someoftheseframeworksareaccompaniedby(self-)assessmentinstruments.TheJRCisalsoentrustedtodevelopafutureframeworkforpersonalandsocialdevelopment,includinglearningtolearn.AdditionalresearchhasbeenundertakenonLearningAnalytics,MOOCs(MOOCKnowledge,MOOCs4inclusion),Computationalthinking(Computhink)andpoliciesfortheintegrationandinnovativeuseofdigitaltechnologiesineducation(DigEduPol).
MoreinformationonallourstudiescanbefoundontheJRCSciencehub:https://ec.europa.eu/jrc/en/research-topic/learning-and-skills.
1CommunicationfromtheCommissiontotheEuropeanParliament,theCouncil,theEuropeanEconomicandSocialCommitteeandtheCommitteeoftheRegionsontheDigitalEducationActionPlan(COM(2018)237final).
Executivesummary
AttheNovember2017GothenburgSummit,theCommissionpresentedtheCommunication'StrengtheningEuropeanIdentitythroughEducationandCulture',thatsetoutavisionforaEuropeanEducationAreaandannouncedadedicatedDigitalEducationActionPlan2,whichaimstofosterdigitalskillsandcompetencesforallcitizens.TheActionPlanfocusesonimplementationandtheneedtostimulate,supportandscaleuppurposefuluseofdigitalandinnovativeeducationpractices.Ithasthreepriorities:makingbetteruseofdigitaltechnologyforteachingandlearning;developingrelevantdigitalcompetencesandskillsforthedigitaltransformation;andimprovingeducationthroughbetterdataanalysisandforesight.ArtificialIntelligence(AI)willhaveanimpactonallthese,andinthelastprioritytheCommunicationspecificallyinvitestoexploreitsimpactineducationandtrainingthroughpilots.ThispolicyforesightreportsuggeststhatinthenextyearsAIwillchangelearning,teaching,andeducation.Thespeedoftechnologicalchangewillbeveryfast,anditwillcreatehighpressuretotransformeducationalpractices,institutions,andpolicies.ItisthereforeimportanttounderstandthepotentialimpactofAIonlearning,teaching,andeducation,aswellasonpolicydevelopment.
AIiscurrentlyhighonthepoliticalagendasaroundtheworld.SeveralEUMemberStateshavedeclareditasapoliticalpriority.InfluentialstudiesnowsuggestthatperhapsoneintwooccupationsintheindustrializedcountriesislikelytobecomeautomatedusingalreadyexistingAItechnologies.PolicymakersattheEuropeanParliamenthavehighlightedtheimportanceoftheissue,andtheEuropeanCommission,inits2018annualworkprogramme,setsitswishtomakethemostofAI,whichwillincreasinglyplayaroleinoureconomiesandsocieties3.AIisnowoftencalled“thenextelectricity.”Thetransformativeimpactofgeneralpurposetechnologies,likeAI,however,becomesvisibleonlygradually,whensocietiesandeconomiesreinventthemselvesasusersofnewtechnologies.Technologicalchangebringssocialandculturalchangethatisreflectedinlifestyles,norms,policies,socialinstitutions,skills,andthecontentandformsofeducation.
Wideavailabilityofcheapprocessingpowerandvastamountsofdatainrecentyearshaveenabledimpressivebreakthroughsinmachinelearningandcreatedextraordinarycommercialandresearchinterestinartificialneuralnetworks,i.e.computationalmodelsbasedonthestructureandfunctionsofbiologicalneuralnetworks.NeuralAI,andmachinelearningmethodsassociatedwithit,arenowusedforreal-timelanguageprocessingandtranslation,imageanalysis,driverlesscarsandautonomousvehicles,automatedcustomerservice,frauddetection,processcontrol,syntheticart,servicerobots,andinmanyotherapplications.Althoughsomeofthisexcitementmaybebasedonunrealisticexpectationsandlimitedknowledgeofthecomplexitiesoftheunderpinningtechnologies,itisreasonabletoexpectthattherecentadvancesinAIandmachinelearningwillhaveprofoundimpactsonfuturelabourmarkets,competencerequirements,aswellasinlearningandteachingpractices.Aseducationalsystemstendtoadapttotherequirementsoftheindustrialage,AIcouldmakesomefunctionsofeducationobsoleteandemphasizeothers.Itmayalsoenablenewwaysofteachingandlearning.
2CommunicationfromtheCommissiontotheEuropeanParliament,theCouncil,theEuropeanEconomicandSocialCommitteeandtheCommitteeoftheRegionsontheDigitalEducationActionPlan(COM(2018)237final).
3CommunicationfromtheCommissiontotheEuropeanParliament,theCouncil,theEuropeanEconomicandSocialCommitteeandtheCommitteeoftheRegionsCommissionWorkProgramme2018-Anagendaforamoreunited,strongerandmoredemocraticEurope(COM(2017)650final).
IntheEuropeanframeworkprogrammesforresearchandtechnologicaldevelopment,AItechnologieshavebeenstudiedandappliedineducationalcontextsinmanyprojectsfocusingontechnology-enabledlearning.TheseprojectshaveusedtechnologiesthathavedeeptieswithAIresearch,includingnaturallanguageprocessing,patternrecognition,intelligenttutoring,probabilisticAIplanning,intelligentagents,AIgameengines,andadaptiveusermodelsinpersonalizedlearningenvironments(PLE).Theimpactofthesetechnologiesinpracticaleducationalsettingshasbeenrelativelymodestuntilrecently.Technicaldevelopmentsovertherecentyears,however,suggestthatthesituationmaybechangingrapidly.
Themainintentofthepresentreportistohelpeducatorsandpolicymakerstomakesenseofthesepotentiallyveryimportanttechnicaldevelopments.TounderstandtheimpactofAI,weneedtounderstandwhatAIisandwhatitcando.Inthecurrent“AIavalanche”thisisnotalwayseasy.DeepexpertiseinAItechnologyisscarce,andmanyeducatorsandpolicymakersnowstruggletogetuptodatewithbasicknowledgeinthisarea.Inthemidstofself-drivingcars,speakingrobots,andthefloodof“AImiracles”,itmaybeeasytothinkthatAIisrapidlybecomingsuperintelligent,andgainallthegoodandevilpowersawardedtoitinpopularculture.This,ofcourse,isnotthecase.ThecurrentAIsystemsareseverelylimited,andtherearetechnical,social,scientific,andconceptuallimitstowhattheycando.Perhapssurprisingly,well-establishedresearchonhumanlearningprovidesimportanttoolsandconceptsthathelpusunderstandthestate-of-the-artandfutureofAI.ManycurrentAIsystemsuserathersimplifiedmodelsoflearningandbiologicalintelligence,andlearningtheoriesthushelpusgainbetterunderstandingofthecapabilitiesofcurrentAIsystems.
TherewillbegreateconomicincentivestouseAItoaddressproblemsthatarecurrentlyperceivedasimportantbyeducationaldecision-andpolicy-makers.Thiscreatespolicychallenges.Foreducationaltechnologyvendorsitiseasytosellproductsthatsolveexistingproblems,butitisverydifficulttosellproductsthatrequirechangesininstitutions,organizationsandcurrentpractices.Toavoidhard-wiringthepast,itwouldbeimportanttoputAIinthecontextofthefutureoflearning.PolicymaybeneededtoorientdevelopmentinAItowardssociallyusefuldirectionsthataddressthechallenges,opportunities,andneedsofthefuture.AsAIscalesup,itcaneffectivelyroutinizeoldinstitutionalstructuresandpracticesthatmaynotberelevantforthefuture.Future-orientedwork,therefore,isneededtounderstandthepotentialimpactofAItechnologies.Howthispotentialisrealizeddependsonhowweunderstandlearning,teachingandeducationintheemergingknowledgesocietyandhowweimplementthisunderstandinginpractice.Future-orientedpolicyexperimentation,assuggestedbytheDigitalEducationActionPlan,may,therefore,beaneffectivewaytoaddressthischallenge..
RecentAIbreakthroughsarebasedonsupervisedmachinelearning.Acriticalsuccessfactorofthesesystemsistheavailabilityofhugeamountsofpre-categorizedtrainingdata.Incontrasttologic-andknowledge-basedapproachestoAI,wethereforecharacterizetheseas“data-based”AIsystemsinthisreport.Manyofthese“deep-learning”neuralAIsystemsmaywellbecharacterizedas“datavores.”Atpresent,themostimportanttechnicalbottleneckofAI,therefore,istheavailabilityofdata.Thisisaqualitativelynewdevelopmentinthehistoryofcomputingandinformationprocessing.Withoutaccesstovasttrainingdatasets,itisverydifficulttodevelopsuccessfulAIsystems.Inthisreport,weputforwardanargumentthatEUpoliciescouldcreatedataplatformsthatcouldredefinethecompetitivelandscapeforlearning-andeducation-orientedAIsystems.
AsthesesupervisedAIlearningalgorithmsarebasedonhistoricaldata,theycanonlyseetheworldasarepetitionofthepast.Thishasdeepethicalimplications.When,forexample,studentsandtheirachievementsareassessedusingsuchAIsystems,theassessmentisnecessarilybasedoncriteriathatreflectculturalbiasesandhistoricallysalientmeasuresofsuccess.Supervisedlearningalgorithmscreateunavoidablebiases,andthesearecurrentlyextensivelydebated.Fromamorefundamentalethicalpointofview,however,theexpressionofhumanagencyrequirescapabilitytomakeauthenticchoicesthatdonotonlyrepeatthepast.AlthoughtherearealreadyAIsystemsthatdealwithcreativeactivities,AIsystemswillhavegreatdifficultiesindealingwithpeoplewhoarecreative,innovative,andnotonlyaveragerepresentationsofvastcollectionsofhistoricalexamples.
ItisoftenassumedthatAIsystemsenablenewlevelsofpersonalisationanddiversityforinformationsystems;muchofthis,however,resultsfromfine-grainedcategorizationthatputsusersintopre-definedclasses.Althoughthesesystemsmaybeabletoefficientlysimulatepersonalisation,theydonotnecessarilysupportdeeperlevelsofdiversity.AtpresentwecansaythattheuseAIsystemsineducationalsettingswillshapethedevelopmentofhumancognitionandself-efficacy,butwedon’tknowhow.Itisthereforeimportanttocontinuouslyevaluate,forexample,howtheuseofAIineducationalcontextsconstrainsandenableshumanpossibilitiesforresponsibleandethicalaction.AIsystemscanbeexcellentpredictivemachines,butthisstrengthmaybeanimportantweaknessindomainswherelearninganddevelopmentareimportant.AcontributionofthisreportistoshowthatdifferenttypesofAIandmachinelearningsystemsoperateondifferentlayersofhumanbehaviour4.Mostimportantly,thelevelofmeaningfulactivity—whichinsocio-culturaltheoriesoflearningunderpinsadvancedformsofhumanintelligenceandlearning—remainsbeyondthecurrentstateoftheAIart.
OneofthemostsuccessfulapplicationareasinAIhasbeenvideoprocessing.Therewillbestrongeconomicinterestsinusingvideo-connectedAIsystemsinclassroomsandtocomplementthecollecteddatawithdatafromsocialmediaandInternetofthings(IoT)platforms.Asitbecomestechnicallypossibletomonitorstudentemotionsandattentioninrealtimeandusesuchdatatohelpteachersandstudents,AIprivacyandsecuritybecomeimportanttopicsalsoineducation.Similarly,AIsystemsarewellsuitedforcollectinginformalevidenceofskills,experience,andcompetencefromopendatasources,includingsocialmedia,learnerportfolios,andopenbadges.Thiscreatesbothethicalandregulatorychallenges.
Severalhigh-profileeconometricstudiesonthefutureofworkhaveshownthatmanyoccupationscanbeautomatedwithcurrentAItechnologies.Thesestudieshavereliedontask-andskill-biasedmodelsoftechnicalchange.Inthisreport,wearguethatadata-biasedmodelismoreappropriateforcurrentAIsystems.Wealsoexploreasimilarmethodologytoseehowthefutureoftheteachingprofessionmightlooklike.Theresultssuggestthatmanycurrentlydefinedhigh-priorityteachertasksmightbeautomated.However,thisisbasedontheassumptionthattheroleofteachersisrathermechanicalandpurelyinstructionalwithsummativeassessmentplayingacentralrole,reflectingdeepbeliefsaboutthefunctionsofeducationandthesocialinstitutionsaroundit.Ineducationalsystemsthatemphasizedevelopmentand,forexample,socialcompetences,formativeassessmentmightbehigheronthelist.Asaresult,thereisariskthatAImightbeusedtoscaleupbadpedagogicalpractices.IfAIisthenewelectricity,itwillhaveabroadimpactinsociety,economy,andeducation,butitneedstobetreatedwithcare.
4Readersmayalsobeinterestedin“HUMAINT”,aninterdisciplinaryJRCprojectaimingtounderstandtheimpactofmachineintelligenceonhumanbehaviour,withafocusoncognitiveandsocio-emotionalcapabilitiesanddecisionmaking(seehttps://ec.europa.eu/jrc/communities/community/humaint).
Introduction
Allhumanactionsarebasedonanticipatedfutures.Wecannotknowthefuturebecauseitdoesnotexistyet,butwecanuseourcurrentknowledgetoimaginefuturesandmakethemhappen.Thebetterweunderstandthepresentandthehistorythathascreatedit,thebetterwecanunderstandthepossibilitiesofthefuture.Toappreciatetheopportunitiesandchallengesthatartificialintelligence(AI)creates,weneedbothgoodunderstandingofwhatAIistodayandwhatthefuturemaybringwhenAIiswidelyusedinthesociety.AIcanenablenewwaysoflearning,teachingandeducation,anditmayalsochangethesocietyinwaysthatposenewchallengesforeducationalinstitutions.Itmayamplifyskilldifferencesandpolarizejobs,oritmayequalizeopportunitiesforlearning.TheuseofAIineducationmaygenerateinsightsonhowlearninghappens,anditcanchangethewaylearningisassessed.Itmayre-organizeclassroomsormakethemobsolete,itcanincreasetheefficiencyofteaching,oritmayforcestudentstoadapttotherequirementsoftechnology,deprivinghumansfromthepowersofagencyandpossibilitiesforresponsibleaction.Allthisispossible.NowisagoodtimetostartthinkingaboutwhatAIcouldmeanforlearning,teaching,andeducation.Thereisalotofhype,andthetopicisnotaneasyone.Itis,however,bothimportant,interesting,andworththeeffort.
Since2013,whenFreyandOsborne5estimatedthatalmosthalfofU.S.jobswereatahighriskofbecomingautomated,AIhasbeenontopofpolicymakers’agendas.Manystudieshavereplicatedandrefinedthisstudy,andthegeneralconsensusnowisthatAIwillgeneratemajortransformationsinthelabourmarket.6Manyskillsthatwereimportantinthepastarebecomingautomated,andmanyjobsandoccupationswillbecomeobsoleteortransformedwhenAIwillbeincreasinglyused.Atthesametime,therehasbeenatremendousdemandforpeoplewithskillsinAIdevelopment,leadingtosevenfiguresalariesandsign-upfees.ChinahasannouncedthatitaimstobecometheworldleaderinAIandgrowa150billionAIecosystemby2030.TheU.S.DepartmentofDefenseinvestedabout2.5billionUSDinAIin2017,andthetotalprivateinvestmentintheU.S.isnowprobablyover20billionUSDperyear.In2017,therewereabout1200AIstart-upsinEurope,7andtheEuropeanCommissionaimstoincreasethetotalpublicandprivateinvestmentinAIintheEUtobeatleast20billioneurosbytheendof2020.8
Inlimitedtasks,AIalreadyexceedshumancapabilities.Lastyear,withjustaboutonemonthofsystemdevelopment,researchersatStanfordwereabletouseAItodiagnose
14typesofmedicalconditionsusingfrontal-viewX-rayimages,exceedingthehumandiagnosticaccuracyforpneumonia.9In2017,givennodomainknowledgeexceptthegamerules,anartificialneuralnetworksystem,AlphaZero,achievedwithin24hoursasuperhumanlevelofplayinthegamesofchess,shogi,andGo.10InMay2018,GoogleCEOSundarPichaicausedafirestormwhenhedemonstratedinhiskeynoteanAIsystem,Duplex,thatcanautonomouslyscheduleappointmentsonthephone,foolingpeopletothinktheyarediscussingwithanotherhuman.Inthemidstofself-drivingcars,speakingrobots,andthefloodofAImiracles,itmaybeeasytothinkthatAIisrapidlybecomingsuperintelligent,andgainallthegoodandevilpowersawardedtoitinpopularculture.This,ofcourse,isnotthecase.ThecurrentAIsystemsareseverelylimited,andtherearetechnical,social,scientific,andconceptuallimitstowhattheycando.Asone
5FreyandOsborne(2013,2017).
6E.g.,EuropeanPoliticalStrategyCentre(EPSC2018),UnitedStatesGovernmentAccountabilityOffice(GAO2018),FinnishSteeringGroupofArtificialIntelligenceProgramme(2017),andUKHouseofLords(2018).
7 DatafromtheU.K.HouseofLordsSelectCommitteeonArtificialIntelligencereport(HouseofLords2018,48).
8 ArtificialIntelligenceforEurope(EC2018b).
9 Rajpurkaretal.(2017).
10 Silveretal.(2017).
recentauthornoted,AImayberidingaone-trickponyasalmostallAIadvancesreportedinthemediaarebasedonideasthataremorethanthreedecadesold.11AparticularchallengeofthecurrentlydominantlearningmodelsusedinAIisthattheycanonlyseetheworldasarepetitionofthepast.Theavailablecategoriesandsuccesscriteriathatareusedfortheirtrainingaresuppliedbyhumans.Personalandculturalbiases,thus,areaninherentelementinAIsystems.Athree-levelmodelofhumanactionpresentedinthenextsectionsuggeststhatnormsandvaluesareoftentacitandexpressedthroughunarticulatedemotionalreactions.Perhapssurprisingly,therecentsuccessesinAIalsorepresenttheoldestapproachtoAIandonewherealmostalltheintelligencecomesfromhumans.
InsteadofabeginningofanAIrevolution,wecouldbeattheendofone.This,ofcourse,dependsonwhatwemeanbyrevolution.ElectricitydidnotrevolutionizetheworldwhenVoltafoundawaytostoreitin1800orwhenEdisonGeneralElectricCompanywasincorporatedin1889.Thetransformativeimpactofgeneralpurposetechnologiesbecomesvisibleonlygradually,whensocietiesandeconomiesreinventthemselvesasusersofnewtechnologies.Technologicalchangerequiresculturalchangethatisreflectedinlifestyles,norms,policies,socialinstitutions,skills,andeducation.Becauseofthis,AI—nowoftencalledthe"newelectricity"—mayrevolutionizemanyareasoflifewhenitistakenintouseevenifitkeepsondrivingits"one-trick"ponyfortheforeseeablefuture.Manyinterestingthingswillhappenwhenalreadyexistingtechnologieswillbeadopted,adapted,andappliedforlearning,teaching,andeducation.Forexample,AImayenablebothnewlearningandteachingpractices,anditmaygenerateanewsocial,cultural,andeconomiccontextforeducation.
BelowweasksimplequestionsthatillustratetherelevanceofAIforeducationalpoliciesandpractices.Whichvocationsandoccupationswillbecomeobsoleteinthenearfuture?Whatarethe21stCenturyskillsinaworldwhereAIiswidelyused?HowshouldAIbeincorporatedintheK-12curriculum?HowwillAIchangeteaching?Shouldreal-timemonitoringofstudentemotionsbeallowedinclassrooms?CanAIfairlyassessstudents?DoweneedfewerclassroomsbecauseofAI?DoesAIreducetheimpactofdyslexia,dyscalculia,orotherlearningdifficulties?Thesequestionsaresimpletoask,andrelevantforunderstandingthefutureoflearning,teaching,andeducation.Theanswers,ofcourse,aremorecomplex.
Themainaimofthisreportistoputtheseandothersimilarquestionsinacontextwheretheycanbemeaningfullyaddressed.Wedonotaimtoprovidefinalanswers;instead,wehopetoprovidebackgroundthatwillfacilitatediscussionontheseandotherimportantquestionsthatneedtobeaskedasAIbecomesincreasinglyvisibleinthesocietyandeconomyaroundus.Todothis,wehavetofirstopenthe"blackbox"ofAIandpeekinside.ThereareseveralthingsAIcandowell,andmanythingsitcannotdo.AtpresentthereisanavalancheofreportsandnewspaperarticlesonAI,anditisnotalwayseasytodistinguishimportantmessagesfromnoise.Itis,however,importanttounderstandsomekeycharacteristicsofcurrentAItobeabletoimaginerealisticfutures.Inthenextsections,weputAIinthecontextoflearning,teaching,andeducation,andthenfocusonthespecificformofAI,adaptiveartificialneuralnetworks,thathavegeneratedtherecentinterestinAI.
11 Somers(2017
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 1500字2024年度综合性服务承包协议模板版B版
- 2024年品牌产品销售代理协议样本版B版
- 江南大学《概率论与数理统计Ⅰ》2022-2023学年第一学期期末试卷
- 2024年度混合用地购买合同2篇
- 佳木斯大学《商务日语会话1》2021-2022学年第一学期期末试卷
- 2024年全新工作职责协议协议范本版
- 佳木斯大学《翻译理论与实践》2021-2022学年第一学期期末试卷
- 暨南大学《西班牙语视听说Ⅰ》2021-2022学年第一学期期末试卷
- 暨南大学《经济学原理》2021-2022学年第一学期期末试卷
- 暨南大学《古代中国与外来文明》2021-2022学年第一学期期末试卷
- 职业生涯规划软件工程
- 团体音乐治疗
- 学校食品营养健康培训方案
- 《希望点列举法》课件
- 景区代步车可行性分析方案
- 蜘蛛人施工方案
- 医疗安全不良事件警示教育培训课件
- 天津市部分区2023-2024学年九年级上学期化学期末试题
- FBS-GC-002-班前班后会记录表
- 参加抗疫情工作证明
- 项目管理工具与技巧培训
评论
0/150
提交评论