2024届浙江省桐乡市中考押题数学预测卷含解析_第1页
2024届浙江省桐乡市中考押题数学预测卷含解析_第2页
2024届浙江省桐乡市中考押题数学预测卷含解析_第3页
2024届浙江省桐乡市中考押题数学预测卷含解析_第4页
2024届浙江省桐乡市中考押题数学预测卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省桐乡市中考押题数学预测卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A. B. C. D.2.若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥,则正圆锥侧面展开图的圆心角是()A.90°B.120°C.150°D.180°3.6的绝对值是()A.6 B.﹣6 C. D.4.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,1.对于这组数据,下列说法错误的是()A.平均数是15 B.众数是10 C.中位数是17 D.方差是5.下列分式中,最简分式是()A. B. C. D.6.如图,反比例函数y=-4x的图象与直线y=-1A.8B.6C.4D.27.-sin60°的倒数为()A.-2 B. C.- D.-8.二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论正确的是()A.a<0 B.b2-4ac<0 C.当-1<x<3时,y>0 D.-=19.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A. B. C. D.10.已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是()A.k≤2且k≠1 B.k<2且k≠1C.k=2 D.k=2或1二、填空题(共7小题,每小题3分,满分21分)11.如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=的图象上,则菱形的面积为_____.12.计算:()﹣1﹣(5﹣π)0=_____.13.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.14.如图,直线y=k1x+b与双曲线交于A、B两点,其横坐标分别为1和5,则不等式k1x<+b的解集是▲.15.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为.16.如图1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,点E,F分别是线段BC,AC的中点,连结EF.(1)线段BE与AF的位置关系是,=.(2)如图2,当△CEF绕点C顺时针旋转a时(0°<a<180°),连结AF,BE,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.(3)如图3,当△CEF绕点C顺时针旋转a时(0°<a<180°),延长FC交AB于点D,如果AD=6﹣2,求旋转角a的度数.17.分解因式:_____.三、解答题(共7小题,满分69分)18.(10分)已知:四边形ABCD是平行四边形,点O是对角线AC、BD的交点,EF过点O且与AB、CD分别相交于点E、F,连接EC、AF.(1)求证:DF=EB;(2)AF与图中哪条线段平行?请指出,并说明理由.19.(5分)(1)如图1,在矩形ABCD中,AB=2,BC=5,∠MPN=90°,且∠MPN的直角顶点在BC边上,BP=1.①特殊情形:若MP过点A,NP过点D,则=.②类比探究:如图2,将∠MPN绕点P按逆时针方向旋转,使PM交AB边于点E,PN交AD边于点F,当点E与点B重合时,停止旋转.在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由.(2)拓展探究:在Rt△ABC中,∠ABC=90°,AB=BC=2,AD⊥AB,⊙A的半径为1,点E是⊙A上一动点,CF⊥CE交AD于点F.请直接写出当△AEB为直角三角形时的值.20.(8分)小明准备用一块矩形材料剪出如图所示的四边形ABCD(阴影部分),做成要制作的飞机的一个机翼,请你根据图中的数据帮小明计算出CD的长度.(结果保留根号).21.(10分)发现如图1,在有一个“凹角∠A1A2A3”n边形A1A2A3A4……An中(n为大于3的整数),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.验证如图2,在有一个“凹角∠ABC”的四边形ABCD中,证明:∠ABC=∠A+∠C+∠D.证明3,在有一个“凹角∠ABC”的六边形ABCDEF中,证明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.延伸如图4,在有两个连续“凹角A1A2A3和∠A2A3A4”的四边形A1A2A3A4……An中(n为大于4的整数),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣)×180°.22.(10分)如图,已知与抛物线C1过A(-1,0)、B(3,0)、C(0,-3).(1)求抛物线C1的解析式.(2)设抛物线的对称轴与x轴交于点P,D为第四象限内的一点,若△CPD为等腰直角三角形,求出D点坐标.23.(12分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.求甲、乙两种树苗每棵的价格各是多少元?在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?24.(14分)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的不完整统计表:节目代号ABCDE节目类型新闻体育动画娱乐戏曲喜爱人数1230m549请你根据以上的信息,回答下列问题:(1)被调查学生的总数为人,统计表中m的值为.扇形统计图中n的值为;(2)被调查学生中,最喜爱电视节目的“众数”;(3)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生人数.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】

由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.【详解】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选C.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.2、D【解析】试题分析:设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,设正圆锥的侧面展开图的圆心角是n°,则2r·πr180考点:圆锥的计算.3、A【解析】试题分析:1是正数,绝对值是它本身1.故选A.考点:绝对值.4、C【解析】

解:中位数应该是15和17的平均数16,故C选项错误,其他选择正确.故选C.【点睛】本题考查求中位数,众数,方差,理解相关概念是本题的解题关键.5、A【解析】试题分析:选项A为最简分式;选项B化简可得原式==;选项C化简可得原式==;选项D化简可得原式==,故答案选A.考点:最简分式.6、A【解析】试题解析:由于点A、B在反比例函数图象上关于原点对称,则△ABC的面积=2|k|=2×4=1.故选A.考点:反比例函数系数k的几何意义.7、D【解析】分析:根据乘积为1的两个数互为倒数,求出它的倒数即可.详解:的倒数是.故选D.点睛:考查特殊角的三角函数和倒数的定义,熟记特殊角的三角函数值是解题的关键.8、D【解析】试题分析:根据二次函数的图象和性质进行判断即可.解:∵抛物线开口向上,∴∴A选项错误,∵抛物线与x轴有两个交点,∴∴B选项错误,由图象可知,当-1<x<3时,y<0∴C选项错误,由抛物线的轴对称性及与x轴的两个交点分别为(-1,0)和(3,0)可知对称轴为即-=1,∴D选项正确,故选D.9、C【解析】

根据平行四边形的性质和圆周角定理可得出答案.【详解】根据平行四边形的性质可知∠B=∠AOC,根据圆内接四边形的对角互补可知∠B+∠D=180°,根据圆周角定理可知∠D=∠AOC,因此∠B+∠D=∠AOC+∠AOC=180°,解得∠AOC=120°,因此∠ADC=60°.故选C【点睛】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.10、D【解析】

当k+1=0时,函数为一次函数必与x轴有一个交点;当k+1≠0时,函数为二次函数,根据条件可知其判别式为0,可求得k的值.【详解】当k-1=0,即k=1时,函数为y=-4x+4,与x轴只有一个交点;当k-1≠0,即k≠1时,由函数与x轴只有一个交点可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,综上可知k的值为1或2,故选D.【点睛】本题主要考查函数与x轴的交点,掌握二次函数与x轴只有一个交点的条件是解题的关键,解决本题时注意考虑一次函数和二次函数两种情况.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】

连接AC交OB于D,由菱形的性质可知.根据反比例函数中k的几何意义,得出△AOD的面积=1,从而求出菱形OABC的面积=△AOD的面积的4倍.【详解】连接AC交OB于D.

四边形OABC是菱形,

点A在反比例函数的图象上,

的面积,

菱形OABC的面积=的面积=1.【点睛】本题考查的知识点是菱形的性质及反比例函数的比例系数k的几何意义.解题关键是反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即.12、1【解析】

分别根据负整数指数幂,0指数幂的化简计算出各数,即可解题【详解】解:原式=2﹣1=1,故答案为1.【点睛】此题考查负整数指数幂,0指数幂的化简,难度不大13、1【解析】

底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=1cm.故填1.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.14、-2<x<-1或x>1.【解析】不等式的图象解法,平移的性质,反比例函数与一次函数的交点问题,对称的性质.不等式k1x<+b的解集即k1x-b<的解集,根据不等式与直线和双曲线解析式的关系,可以理解为直线y=k1x-b在双曲线下方的自变量x的取值范围即可.而直线y=k1x-b的图象可以由y=k1x+b向下平移2b个单位得到,如图所示.根据函数图象的对称性可得:直线y=k1x-b和y=k1x+b与双曲线的交点坐标关于原点对称.由关于原点对称的坐标点性质,直线y=k1x-b图象与双曲线图象交点A′、B′的横坐标为A、B两点横坐标的相反数,即为-1,-2.∴由图知,当-2<x<-1或x>1时,直线y=k1x-b图象在双曲线图象下方.∴不等式k1x<+b的解集是-2<x<-1或x>1.15、1.【解析】试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=1,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.考点:平移的性质.16、(1)互相垂直;;(2)结论仍然成立,证明见解析;(3)135°.【解析】

(1)结合已知角度以及利用锐角三角函数关系求出AB的长,进而得出答案;

(2)利用已知得出△BEC∽△AFC,进而得出∠1=∠2,即可得出答案;

(3)过点D作DH⊥BC于H,则DB=4-(6-2)=2-2,进而得出BH=-1,DH=3-,求出CH=BH,得出∠DCA=45°,进而得出答案.【详解】解:(1)如图1,线段BE与AF的位置关系是互相垂直;

∵∠ACB=90°,BC=2,∠A=30°,

∴AC=2,

∵点E,F分别是线段BC,AC的中点,

∴=;(2))如图2,∵点E,F分别是线段BC,AC的中点,

∴EC=BC,FC=AC,

∴,

∵∠BCE=∠ACF=α,

∴△BEC∽△AFC,

∴,

∴∠1=∠2,

延长BE交AC于点O,交AF于点M

∵∠BOC=∠AOM,∠1=∠2

∴∠BCO=∠AMO=90°

∴BE⊥AF;(3)如图3,∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°过点D作DH⊥BC于H∴DB=4-(6-2)=2-2,∴BH=-1,DH=3-,又∵CH=2-(-1)=3-,∴CH=BH,∴∠HCD=45°,∴∠DCA=45°,α=180°-45°=135°.17、【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式2后继续应用完全平方公式分解即可:.三、解答题(共7小题,满分69分)18、(1)见解析;(2)AF∥CE,见解析.【解析】

(1)直接利用全等三角三角形判定与性质进而得出△FOC≌△EOA(ASA),进而得出答案;(2)利用平行四边形的判定与性质进而得出答案.【详解】(1)证明:∵四边形ABCD是平行四边形,点O是对角线AC、BD的交点,∴AO=CO,DC∥AB,DC=AB,∴∠FCA=∠CAB,在△FOC和△EOA中,∴△FOC≌△EOA(ASA),∴FC=AE,∴DC-FC=AB-AE,即DF=EB;(2)AF∥CE,理由:∵FC=AE,FC∥AE,∴四边形AECF是平行四边形,∴AF∥CE.【点睛】此题主要考查了平行四边形的判定与性质以及全等三角形的判定与性质,正确得出△FOC≌△EOA(ASA)是解题关键.19、(1)①特殊情形:;②类比探究:是定值,理由见解析;(2)或【解析】

(1)证明,即可求解;(2)点E与点B重合时,四边形EBFA为矩形,即可求解;(3)分时、时,两种情况分别求解即可.【详解】解:(1),,故答案为;(2)点E与点B重合时,四边形EBFA为矩形,则为定值;(3)①当时,如图3,过点E、F分别作直线BC的垂线交于点G,H,由(1)知:,,同理,.则,则;②当时,如图4,,则,,则,,则,故或.【点睛】本题考查的圆知识的综合运用,涉及到解直角三角形的基本知识,其中(3),要注意分类求解,避免遗漏.20、CD的长度为17﹣17cm.【解析】

在直角三角形中用三角函数求出FD,BE的长,而FC=AE=AB+BE,而CD=FC-FD,从而得到答案.【详解】解:由题意,在Rt△BEC中,∠E=90°,∠EBC=60°,∴∠BCE=30°,tan30°=,∴BE=ECtan30°=51×=17(cm);∴CF=AE=34+BE=(34+17)cm,在Rt△AFD中,∠FAD=45°,∴∠FDA=45°,∴DF=AF=EC=51cm,则CD=FC﹣FD=34+17﹣51=17﹣17,答:CD的长度为17﹣17cm.【点睛】本题主要考查了在直角三角形中三角函数的应用,解本题的要点在于求出FC与FD的长度,即可求出答案.21、(1)见解析;(2)见解析;(3)1.【解析】

(1)如图2,延长AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答(2)如图3,延长AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答(3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出规律即可解答【详解】(1)如图2,延长AB交CD于E,则∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,∴∠ABC=∠A+∠C+∠D;(2)如图3,延长AB交CD于G,则∠ABC=∠BGC+∠C,∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣310°;(3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,则∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,∵∠1+∠3=(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An),而∠2+∠4=310°﹣(∠1+∠3)=310°﹣[(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An)],∴∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A1……+∠An﹣(n﹣1)×180°.故答案为1.【点睛】此题考查多边形的内角和外角,,解题的关键是熟练掌握三角形的外角的性质,属于中考常考题型22、(1)y=x2-2x-3,(2)D1(4,-1),D2(3,-4),D3(2,-2)【解析】

(1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入即可求出解析式;(2)根据题意作出图形,根据等腰直角三角形的性质即可写出坐标.【详解】(1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入得-3=a×(-3)×1解得a=1,∴解析式为y=x2-2x-3,(2)如图所示,对称轴为x=1,过D1作D1H⊥x轴,∵△CPD为等腰直角三角形,∴△OPC≌△HD1P,∴PH=OC=3,HD1=OP=1,∴D1(4,-1)过点D2F⊥y轴,同理△OPC≌△FCD2,∴FD2=3,CF=1,故D2(3,-4)由图可知CD1与PD2交于D3,此时PD3⊥CD3,且PD3=CD3,PC=,∴PD3=CD3=故D3(2,-2)∴D1(4,-1),D2(3,-4),D3(2,-2)使△CPD为等腰直角三角形.【点睛】此题主要考察二次函数与等腰直角三角形结合的题,解题的关键是熟知二次函数的图像与性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论