




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省东营市实验中学重点中学2024届中考联考数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.为丰富学生课外活动,某校积极开展社团活动,开设的体育社团有:A:篮球,B:排球,C:足球,D:羽毛球,E:乒乓球.学生可根据自己的爱好选择一项,李老师对八年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是()A.选科目E的有5人B.选科目A的扇形圆心角是120°C.选科目D的人数占体育社团人数的D.据此估计全校1000名八年级同学,选择科目B的有140人2.1﹣的相反数是()A.1﹣ B.﹣1 C. D.﹣13.如图,已知,那么下列结论正确的是()A. B. C. D.4.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A.10π B.15π C.20π D.30π5.下列计算正确的是()A.a2•a3=a5B.2a+a2=3a3C.(﹣a3)3=a6D.a2÷a=26.如图,圆弧形拱桥的跨径米,拱高米,则拱桥的半径为()米A. B. C. D.7.小华和小红到同一家鲜花店购买百合花与玫瑰花,他们购买的数量如下表所示,小华一共花的钱比小红少8元,下列说法正确的是()百合花玫瑰花小华6支5支小红8支3支A.2支百合花比2支玫瑰花多8元B.2支百合花比2支玫瑰花少8元C.14支百合花比8支玫瑰花多8元D.14支百合花比8支玫瑰花少8元8.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线 C.AC2=BC•CD D.9.如图,若AB∥CD,CD∥EF,那么∠BCE=()A.∠1+∠2 B.∠2-∠1C.180°-∠1+∠2 D.180°-∠2+∠110.如图所示是由几个完全相同的小正方体组成的几何体的三视图.若小正方体的体积是1,则这个几何体的体积为()A.2 B.3 C.4 D.5二、填空题(共7小题,每小题3分,满分21分)11.在2018年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为_____.12.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于_____.13.如果把抛物线y=2x2﹣1向左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是_____.14.分解因式:_____.15.如图,两个三角形相似,AD=2,AE=3,EC=1,则BD=_____.16.某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A原料、1.5千克B原料;乙产品每袋含2千克A原料、1千克B原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A原料和B原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元.17.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是_____cm.三、解答题(共7小题,满分69分)18.(10分)如图,AB是⊙O的直径,弧CD⊥AB,垂足为H,P为弧AD上一点,连接PA、PB,PB交CD于E.(1)如图(1)连接PC、CB,求证:∠BCP=∠PED;(2)如图(2)过点P作⊙O的切线交CD的延长线于点E,过点A向PF引垂线,垂足为G,求证:∠APG=∠F;(3)如图(3)在图(2)的条件下,连接PH,若PH=PF,3PF=5PG,BE=2,求⊙O的直径AB.19.(5分)有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.随机抽取一张卡片,求抽到数字“﹣1”的概率;随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.20.(8分)图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2、当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到达点B时,伞张得最开、已知伞在撑开的过程中,总有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、设AP=x分米.(1)求x的取值范围;(2)若∠CPN=60°,求x的值;(3)设阳光直射下,伞下的阴影(假定为圆面)面积为y,求y关于x的关系式(结果保留π).21.(10分)先化简,再求值:(﹣a)÷(1+),其中a是不等式﹣<a<的整数解.22.(10分)(1)计算:2﹣2﹣+(1﹣)0+2sin60°.(2)先化简,再求值:()÷,其中x=﹣1.23.(12分)如图,抛物线交X轴于A、B两点,交Y轴于点C,.(1)求抛物线的解析式;(2)平面内是否存在一点P,使以A,B,C,P为顶点的四边形为平行四边形,若存在直接写出P的坐标,若不存在请说明理由。24.(14分)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:“读书节“活动计划书书本类别科普类文学类进价(单位:元)1812备注(1)用不超过16800元购进两类图书共1000本;科普类图书不少于600本;…(1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0<a<5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】
A选项先求出调查的学生人数,再求选科目E的人数来判定,B选项先求出A科目人数,再利用×360°判定即可,C选项中由D的人数及总人数即可判定,D选项利用总人数乘以样本中B人数所占比例即可判定.【详解】解:调查的学生人数为:12÷24%=50(人),选科目E的人数为:50×10%=5(人),故A选项正确,选科目A的人数为50﹣(7+12+10+5)=16人,选科目A的扇形圆心角是×360°=115.2°,故B选项错误,选科目D的人数为10,总人数为50人,所以选科目D的人数占体育社团人数的,故C选项正确,估计全校1000名八年级同学,选择科目B的有1000×=140人,故D选项正确;故选B.【点睛】本题主要考查了条形统计图及扇形统计图,解题的关键是读懂统计图,从统计图中找到准确信息.2、B【解析】
根据相反数的的定义解答即可.【详解】根据a的相反数为-a即可得,1﹣的相反数是﹣1.故选B.【点睛】本题考查了相反数的定义,熟知相反数的定义是解决问题的关键.3、A【解析】
已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB∥CD∥EF,∴.故选A.【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.4、B【解析】由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,∴圆锥的侧面积=lr=×6π×5=15π,故选B5、A【解析】
直接利用合并同类项法则以及积的乘方运算法则、整式的除法运算法则分别计算得出答案.【详解】A、a2•a3=a5,故此选项正确;B、2a+a2,无法计算,故此选项错误;C、(-a3)3=-a9,故此选项错误;D、a2÷a=a,故此选项错误;故选A.【点睛】此题主要考查了合并同类项以及积的乘方运算、整式的除法运算,正确掌握相关运算法则是解题关键.6、A【解析】试题分析:根据垂径定理的推论,知此圆的圆心在CD所在的直线上,设圆心是O.连接OA.根据垂径定理和勾股定理求解.得AD=6设圆的半径是r,根据勾股定理,得r2=36+(r﹣4)2,解得r=6.5考点:垂径定理的应用.7、A【解析】
设每支百合花x元,每支玫瑰花y元,根据总价=单价×购买数量结合小华一共花的钱比小红少8元,即可得出关于x、y的二元一次方程,整理后即可得出结论.【详解】设每支百合花x元,每支玫瑰花y元,根据题意得:8x+3y﹣(6x+5y)=8,整理得:2x﹣2y=8,∴2支百合花比2支玫瑰花多8元.故选:A.【点睛】考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.8、C【解析】
结合图形,逐项进行分析即可.【详解】在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;②,故选C.【点睛】本题考查了相似三角形的条件,熟练掌握相似三角形的判定方法是解题的关键.9、D【解析】
先根据AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把两式相加即可得出结论.【详解】解:∵AB∥CD,∴∠BCD=∠1,∵CD∥EF,∴∠DCE=180°-∠2,∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.故选:D.【点睛】本题考查的是平行线的判定,用到的知识点为:两直线平行,内错角相等,同旁内角互补.10、C【解析】
根据左视图发现最右上角共有2个小立方体,综合以上,可以发现一共有4个立方体,主视图和左视图都是上下两行,所以这个几何体共由上下两层小正方体组成,俯视图有3个小正方形,所以下面一层共有3个小正方体,结合主视图和左视图的形状可知上面一层只有最左边有个小正方体,故这个几何体由4个小正方体组成,其体积是4.故选C.【点睛】错因分析
容易题,失分原因:未掌握通过三视图还原几何体的方法.二、填空题(共7小题,每小题3分,满分21分)11、3.05×105【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】305000=3.05×故答案为:3.05×10【点睛】本题考查的知识点是科学记数法—表示较大的数,解题关键是熟记科学计数法的表示方法.12、5π【解析】
根据题意得出球在无滑动旋转中通过的路程为圆弧,根据弧长公式求出弧长即可.【详解】解:由图形可知,圆心先向前走OO1的长度,从O到O1的运动轨迹是一条直线,长度为圆的周长,然后沿着弧O1O2旋转圆的周长,则圆心O运动路径的长度为:×2π×5=5π,故答案为5π.【点睛】本题考查的是弧长的计算和旋转的知识,解题关键是确定半圆作无滑动翻转所经过的路线并求出长度.13、y=2(x+1)2+1.【解析】原抛物线的顶点为(0,-1),向左平移1个单位,同时向上平移4个单位,那么新抛物线的顶点为(-1,1);可设新抛物线的解析式为y=2(x-h)2+k,代入得:y=2(x+1)2+1.14、【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式2后继续应用完全平方公式分解即可:.15、1【解析】
根据相似三角形的对应边的比相等列出比例式,计算即可.【详解】∵△ADE∽△ACB,∴=,即=,解得:BD=1.故答案为1.【点睛】本题考查的是相似三角形的性质,掌握相似三角形的对应边的比相等是解题的关键.16、5750【解析】
根据题意设甲产品的成本价格为b元,求出b,可知A原料与B原料的成本和40元,然后设A种原料成本价格x元,B种原料成本价格(40﹣x)元,生产甲产品m袋,乙产品n袋,列出方程组得到xn=20n﹣250,最后设生产甲乙产品的实际成本为W元,即可解答【详解】∵甲产品每袋售价72元,则利润率为20%.设甲产品的成本价格为b元,∴=20%,∴b=60,∴甲产品的成本价格60元,∴1.5kgA原料与1.5kgB原料的成本和60元,∴A原料与B原料的成本和40元,设A种原料成本价格x元,B种原料成本价格(40﹣x)元,生产甲产品m袋,乙产品n袋,根据题意得:,∴xn=20n﹣250,设生产甲乙产品的实际成本为W元,则有W=60m+40n+xn,∴W=60m+40n+20n﹣250=60(m+n)﹣250,∵m+n≤100,∴W≤6250;∴生产甲乙产品的实际成本最多为5750元,故答案为5750;【点睛】此题考查不等式和二元一次方程的解,解题关键在于求出甲产品的成本价格17、【解析】
先求出扇形弧长,再求出圆锥的底面半径,再根据勾股定理即可出圆锥的高.【详解】圆心角为120°,半径为6cm的扇形的弧长为4cm∴圆锥的底面半径为2,故圆锥的高为=4cm【点睛】此题主要考查圆的弧长及圆锥的底面半径,解题的关键是熟知圆的相关公式.三、解答题(共7小题,满分69分)18、(1)见解析;(2)见解析;(3)AB=1【解析】
(1)由垂径定理得出∠CPB=∠BCD,根据∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED即可得证;(2)连接OP,知OP=OB,先证∠FPE=∠FEP得∠F+2∠FPE=180°,再由∠APG+∠FPE=90得2∠APG+2∠FPE=180°,据此可得2∠APG=∠F,据此即可得证;(3)连接AE,取AE中点N,连接HN、PN,过点E作EM⊥PF,先证∠PAE=∠F,由tan∠PAE=tan∠F得,再证∠GAP=∠MPE,由sin∠GAP=sin∠MPE得,从而得出,即MF=GP,由3PF=5PG即,可设PG=3k,得PF=5k、MF=PG=3k、PM=2k,由∠FPE=∠PEF知PF=EF=5k、EM=4k及PE=2k、AP=k,证∠PEM=∠ABP得BP=3k,继而可得BE=k=2,据此求得k=2,从而得出AP、BP的长,利用勾股定理可得答案.【详解】证明:(1)∵AB是⊙O的直径且AB⊥CD,∴∠CPB=∠BCD,∴∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED,∴∠BCP=∠PED;(2)连接OP,则OP=OB,∴∠OPB=∠OBP,∵PF是⊙O的切线,∴OP⊥PF,则∠OPF=90°,∠FPE=90°﹣∠OPE,∵∠PEF=∠HEB=90°﹣∠OBP,∴∠FPE=∠FEP,∵AB是⊙O的直径,∴∠APB=90°,∴∠APG+∠FPE=90°,∴2∠APG+2∠FPE=180°,∵∠F+∠FPE+∠PEF=180°,∵∠F+2∠FPE=180°∴2∠APG=∠F,∴∠APG=∠F;(3)连接AE,取AE中点N,连接HN、PN,过点E作EM⊥PF于M,由(2)知∠APB=∠AHE=90°,∵AN=EN,∴A、H、E、P四点共圆,∴∠PAE=∠PHF,∵PH=PF,∴∠PHF=∠F,∴∠PAE=∠F,tan∠PAE=tan∠F,∴,由(2)知∠APB=∠G=∠PME=90°,∴∠GAP=∠MPE,∴sin∠GAP=sin∠MPE,则,∴,∴MF=GP,∵3PF=5PG,∴,设PG=3k,则PF=5k,MF=PG=3k,PM=2k由(2)知∠FPE=∠PEF,∴PF=EF=5k,则EM=4k,∴tan∠PEM=,tan∠F=,∴tan∠PAE=,∵PE=,∴AP=k,∵∠APG+∠EPM=∠EPM+∠PEM=90°,∴∠APG=∠PEM,∵∠APG+∠OPA=∠ABP+∠BAP=90°,且∠OAP=∠OPA,∴∠APG=∠ABP,∴∠PEM=∠ABP,则tan∠ABP=tan∠PEM,即,∴,则BP=3k,∴BE=k=2,则k=2,∴AP=3、BP=6,根据勾股定理得,AB=1.【点睛】本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、四点共圆条件、相似三角形的判定与性质、三角函数的应用等知识点.19、(1);(2).【解析】试题分析:(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为.20、(1)0≤x≤10;(1)x=6;(3)y=﹣πx1+54πx.【解析】
(1)根据题意,得AC=CN+PN,进一步求得AB的长,即可求得x的取值范围;(1)根据等边三角形的判定和性质即可求解;(3)连接MN、EF,分别交AC于B、H.此题根据菱形CMPN的性质求得MB的长,再根据相似三角形的对应边的比相等,求得圆的半径即可.【详解】(1)∵BC=1分米,AC=CN+PN=11分米,∴AB=AC﹣BC=10分米,∴x的取值范围是:0≤x≤10;(1)∵CN=PN,∠CPN=60°,∴△PCN是等边三角形,∴CP=6分米,∴AP=AC﹣PC=6分米,即当∠CPN=60°时,x=6;(3)连接MN、EF,分别交AC于B、H,∵PM=PN=CM=CN,∴四边形PNCM是菱形,∴MN与PC互相垂直平分,AC是∠ECF的平分线,PB==6-,在Rt△MBP中,PM=6分米,∴MB1=PM1﹣PB1=61﹣(6﹣x)1=6x﹣x1.∵CE=CF,AC是∠ECF的平分线,∴EH=HF,EF⊥AC,∵∠ECH=∠MCB,∠EHC=∠MBC=90°,∴△CMB∽△CEH,∴=,∴,∴EH1=9•MB1=9•(6x﹣x1),∴y=π•EH1=9π(6x﹣x1),即y=﹣πx1+54πx.【点睛】此题主要考查了相似三角形的应用以及菱形的性质和二次函数的应用,难点是第(3)问,熟练运用菱形的性质、相似三角形的性质和二次函数的实际应用.21、,1.【解析】
首先化简(﹣a)÷(1+),然后根据a是不等式﹣<a<的整数解,求出a的值,再把求出的a的值代入化简后的算式,求出算式的值是多少即可.【详解】解:(﹣a)÷(1+)=×=,∵a是不等式﹣<a<的整数解,∴a=﹣1,1,1,∵a≠1,a+1≠1,∴a≠1,﹣1,∴a=1,当a=1时,原式==1.22、(1)(2)【解析】
(1)根据负整数指数幂、二次根式、零指数幂和特殊角的三角函数值可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【详解】解:(1)原式=﹣+1+2=﹣+1+=﹣;(2)原式====,当x=﹣1时,原式==.【点睛】本题考查分式的化简求值、绝对值、零指数幂、负整数指数幂和特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.23、(1);(2)(3,-4)或(5,4)或(-5,4)【解析】
(1)设|OA|=1,确定A,B,C三点坐标,然后用待定系数法即可完成;(2)先画出存在的点,然后通过平移和计算确定坐标;【详解】解:(1)设|OA|=1,则A(-1,0),B(4,0)C(0,4)设抛物线的解析式为y=ax2+bx+c则有:解得所以函数解析式为:(2)存在,(3,-4)或(5,4)或(-5,4)理由如下:如图:P1相当于C点向右平移了5个单位长度,则坐标为(5,4);P2相当于C点向左平移了5个单位长度,则坐标为(-5,4);设P3坐标为(m,n)在第四象限,要使AP3BC是平行四边形,则有AP3=BC,BP3=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国童颜针项目创业计划书
- 中国激光诊断与治疗设备项目创业计划书
- 中国AUTOSAR软件项目创业计划书
- 中国可视电话电商项目创业计划书
- 中国高净值人群海外医疗项目创业计划书
- 中国5G无线网络切片项目创业计划书
- 乐理音程考试真题及答案
- 收集春节快乐的小故事
- 2025企业合同管理规范样本
- 2025合同纠纷案例:不良金融债权转让合同争议解析
- 化工厂化验岗位的述职报告
- 光伏发电设备检修维护(高级技师)职业技能鉴定备考试题库(含答案)
- 一年级学生元角分练习500题
- 小学校长在国旗下讲话:守纪律、善学习、铸品德
- 2025-2030年可调节高度台球杆行业跨境出海战略研究报告
- 欢乐购物街第2课时 买卖我做主(说课稿)-2024-2025学年 一年级数学下册人教版
- 合作成果与未来展望模板
- 初中生物2021年初专题周练-血液循环训练题(一)【含详解】
- BMS电池管理系统
- 四川省成都市(2024年-2025年小学六年级语文)部编版小升初模拟(上学期)试卷及答案
- 智能楼宇管理员题库含答案
评论
0/150
提交评论