版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
习题精选精讲 线面垂直的证明中的找线技巧通过计算,运用勾股定理寻求线线垂直1如图1,在正方体中,为的中点,AC交BD于点O,求证:平面MBD.证明:连结MO,,∵DB⊥,DB⊥AC,,∴DB⊥平面,而平面∴DB⊥.设正方体棱长为,则,.在Rt△中,.∵,∴.∵OM∩DB=O,∴⊥平面MBD.评注:在证明垂直关系时,有时可以利用棱长、角度大小等数据,通过计算来证明.利用面面垂直寻求线面垂直2如图2,是△ABC所在平面外的一点,且PA⊥平面ABC,平面PAC⊥平面PBC.求证:BC⊥平面PAC.证明:在平面PAC内作AD⊥PC交PC于D.因为平面PAC⊥平面PBC,且两平面交于PC,平面PAC,且AD⊥PC,由面面垂直的性质,得AD⊥平面PBC.又∵平面PBC,∴AD⊥BC.∵PA⊥平面ABC,平面ABC,∴PA⊥BC.∵AD∩PA=A,∴BC⊥平面PAC.(另外还可证BC分别与相交直线AD,AC垂直,从而得到BC⊥平面PAC).评注:已知条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一条纳入一个平面中,使另一条直线与该平面垂直,即从线面垂直得到线线垂直.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过本题可以看到,面面垂直线面垂直线线垂直.一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直线面垂直面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面是判定定理,而从后面推出前面是性质定理.同学们应当学会灵活应用这些定理证明问题.下面举例说明.3如图1所示,ABCD为正方形,⊥平面ABCD,过且垂直于的平面分别交于.求证:,.证明:∵平面ABCD,∴.∵,∴平面SAB.又∵平面SAB,∴.∵平面AEFG,∴.∴平面SBC.∴.同理可证.评注:本题欲证线线垂直,可转化为证线面垂直,在线线垂直与线面垂直的转化中,平面起到了关键作用,同学们应多注意考虑线和线所在平面的特征,从而顺利实现证明所需要的转化.4如图2,在三棱锥A-BCD中,BC=AC,AD=BD,作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD.证明:取AB的中点F,连结CF,DF.∵,∴.∵,∴.又,∴平面CDF.∵平面CDF,∴.又,,∴平面ABE,.∵,,,∴平面BCD.评注:本题在运用判定定理证明线面垂直时,将问题转化为证明线线垂直;而证明线线垂直时,又转化为证明线面垂直.如此反复,直到证得结论.5如图3,是圆O的直径,C是圆周上一点,平面ABC.若AE⊥PC,E为垂足,F是PB上任意一点,求证:平面AEF⊥平面PBC.证明:∵AB是圆O的直径,∴.∵平面ABC,平面ABC,∴.∴平面APC.∵平面PBC,∴平面APC⊥平面PBC.∵AE⊥PC,平面APC∩平面PBC=PC,∴AE⊥平面PBC.∵平面AEF,∴平面AEF⊥平面PBC.评注:证明两个平面垂直时,一般可先从现有的直线中寻找平面的垂线,即证线面垂直,而证线面垂直则需从已知条件出发寻找线线垂直的关系.6.空间四边形ABCD中,若AB⊥CD,BC⊥AD,求证:AC⊥BD证明:过A作AO⊥平面BCD于O同理BC⊥DO∴O为△ABC的垂心7.证明:在正方体ABCD-A1B1C1D1中,A1C⊥平面BC1D证明:连结ACAC为A1C在平面AC上的射影8.如图,平面ABCD,ABCD是矩形,M、N分别是AB、PC的中点,求证:.证:取PD中点E,则9如图在ΔABC中,AD⊥BC,ED=2AE,过E作FG∥BC,且将ΔAFG沿FG折起,使∠A'ED=60°,求证:A'E⊥平面A'BC分析:弄清折叠前后,图形中各元素之间的数量关系和位置关系。解:∵FG∥BC,AD⊥BC∴A'E⊥FG∴A'E⊥BC设A'E=a,则ED=2a由余弦定理得:A'D2=A'E2+ED2-2•A'E•EDcos60°=3a2∴ED2=A'D2+A'E2∴A'D⊥A'E∴A'E⊥平面A'BC10如图,在空间四边形SABC中,SA平面ABC,ABC=90,ANSB于N,AMSC于M。求证:①ANBC;②SC平面ANM分析:①要证ANBC,转证,BC平面SAB。②要证SC平面ANM,转证,SC垂直于平面ANM内的两条相交直线,即证SCAM,SCAN。要证SCAN,转证AN平面SBC,就可以了。证明:①∵SA平面ABC ∴SABC 又∵BCAB,且ABSA=A ∴BC平面SAB ∵AN平面SAB ∴ANBC ②∵ANBC,ANSB,且SBBC=B ∴AN平面SBC ∵SCC平面SBC ∴ANSC 又∵AMSC,且AMAN=A ∴SC平面ANM11已知如图,P平面ABC,PA=PB=PC,∠APB=∠APC=60°,∠BPC=90°求证:平面ABC⊥平面PBC分析:要证明面面垂直,只要在其呈平面内找一条线,然后证明直线与另一平面垂直即可。显然BC中点D,证明AD垂直平PBC即可证明:取BC中点D连结AD、PD∵PA=PB;∠APB=60°∴ΔPAB为正三角形 同理ΔPAC为正三角形设PA=a在RTΔBPC中,PB=PC=aBC=a∴PD=a在ΔABC中AD==a∵AD2+PD2==a2=AP2∴ΔAPD为直角三角形即AD⊥DP又∵AD⊥BC∴AD⊥平面PBC∴平面ABC⊥平面PBC12.如图,直角BAC在外,,,求证:在内射影为直角。证:如图所示,、为射影确定平面13以AB为直径的圆在平面内,于A,C在圆上,连PB、PC过A作AE⊥PB于E,AF⊥PC于F,试判断图中还有几组线面垂直。解:面AEF两个平面垂直例题解析1.在三棱锥A—BCD中,若AD⊥BC,BD⊥AD,△BCD是锐角三角形,那么必有()A.平面ABD⊥平面ADCB.平面ABD⊥平面ABCC.平面ADC⊥平面BCDD.平面ABC⊥平面BCD【解析】由AD⊥BC,BD⊥ADAD⊥平面BCD,面AD平面ADC∴平面ADC⊥平面BCD.【答案】C2.直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=AA1=a,则点A到平面A1BC的距离是()A.a B.a C.a D.a【解析】取A1C的中点O,连结AO,∵AC=AA1,∴AO⊥A1C又该三棱柱是直三棱柱.∴平面A1C⊥平面ABC.又∵BC⊥AC∴BC⊥AO,因AO⊥平面A1BC,即A1O等于A到平面ABC的距离.解得:A1O=a【答案】C3.三个平面两两垂直,它们的三条交线交于一点O,P到三个面的距离分别是3,4,5,则OP的长为()A.5 B.5 C.3 D.2【解析】构造一个长方体,OP为对角线.【答案】B4.在两个互相垂直的平面的交线上,有两点A、B,AC和BD分别是这两个平面内垂直于AB的线段,AC=6,AB=8,BD=24,则C、D间距离为_____.【解析】如图,CD=====26【答案】265.设两个平面α、β,直线l,下列三个条件:①l⊥α,②l∥β,③α⊥β.若以其中两个作为前提,另一个作为结论,则可构成三个命题,这三个命题中正确的命题个数为()A.3 B.2 C.1 D.0【解析】①②③,其余都错【答案】C【典型例题精讲】[例1]如图9—39,过S引三条长度相等但不共面的线段SA、SB、SC,且∠ASB=∠ASC=60°,∠BSC=90°,求证:平面ABC⊥平面BSC.图9—39【证明】∵SB=SA=SC,∠ASB=∠ASC=60°∴AB=SA=AC取BC的中点O,连AO、SO,则AO⊥BC,SO⊥BC,∴∠AOS为二面角的平面角,设SA=SB=SC=a,又∠BSC=90°,∴BC=a,SO=a,AO2=AC2-OC2=a2-a2=a2,∴SA2=AO2+OS2,∴∠AOS=90°,从而平面ABC⊥平面BSC.【评述】要证两平面垂直,证其二面角的平面角为直角.这也是证两平面垂直的常用方法.[例2]如图9—40,在三棱锥S—ABC中,SA⊥平面ABC,平面SAB⊥平面SBC.图9—40(1)求证:AB⊥BC;(2)若设二面角S—BC—A为45°,SA=BC,求二面角A—SC—B的大小.(1)【证明】作AH⊥SB于H,∵平面SAB⊥平面SBC.平面SAB∩平面SBC=SB,∴AH⊥平面SBC,又SA⊥平面ABC,∴SA⊥BC,而SA在平面SBC上的射影为SB,∴BC⊥SB,又SA∩SB=S,∴BC⊥平面SAB.∴BC⊥AB.(2)【解】∵SA⊥平面ABC,∴平面SAB⊥平面ABC,又平面SAB⊥平面SBC,∴∠SBA为二面角S—BC—A的平面角,∴∠SBA=45°.设SA=AB=BC=a,作AE⊥SC于E,连EH,则EH⊥SC,∴∠AEH为二面角A—SC—B的平面角,而AH=a,AC=a,SC=a,AE=a∴sin∠AEH=,二面角A—SC—B为60°.【注】三垂线法是作二面角的平面角的常用方法.[例3]如图9—41,PA⊥平面ABCD,四边形ABCD是矩形,PA=AD=a,M、N分别是AB、PC的中点.(1)求平面PCD与平面ABCD所成的二面角的大小;(2)求证:平面MND⊥平面PCD(1)【解】PA⊥平面ABCD,CD⊥AD,∴PD⊥CD,故∠PDA为平面ABCD与平面PCD所成二面角的平面角,在Rt△PAD中,PA=AD,∴∠PDA=45°(2)【证明】取PD中点E,连结EN,EA,则ENCDAM,∴四边形ENMA是平行四边形,∴EA∥MN.∵AE⊥PD,AE⊥CD,∴AE⊥平面PCD,从而MN⊥平面PCD,∵MN平面MND,∴平面MND⊥平面PCD.【注】证明面面垂直通常是先证明线面垂直,本题中要证MN⊥平面PCD较困难,转化为证明AE⊥平面PCD就较简单了.另外,在本题中,当AB的长度变化时,可求异面直线PC与AD所成角的范围.[例4]如图9—42,正方体ABCD—A1B1C1D1中,E、F、M、N分别是A1B1、BC、C1D1、B1C1的中点.图9—42(1)求证:平面MNF⊥平面ENF.(2)求二面角M—EF—N的平面角的正切值.(1)【证明】∵M、N、E是中点,∴∴∴即MN⊥EN,又NF⊥平面A1C1,∴MN⊥NF,从而MN⊥平面ENF.∵MN平面MNF,∴平面MNF⊥平面ENF.(2)【解】过N作NH⊥EF于H,连结MH.∵MN⊥平面ENF,NH为MH在平面ENF内的射影,∴由三垂线定理得MH⊥EF,∴∠MHN是二面角M—EF—N的平面角.在Rt△MNH中,求得MN=a,NH=a,∴tan∠MHN=,即二面角M—EF—N的平面角的正切值为.[例5]在长方体ABCD—A1B1C1D1中,底面ABCD是边长为的正方形,侧棱长为,E、F分别是AB1、CB1的中点,求证:平面D1EF⊥平面AB1C.【证明】如图9—43,∵E、F分别是AB1、CB1的中点,图9—43∴EF∥AC.∵AB1=CB1,O为AC的中点.∴B1O⊥AC.故B1O⊥EF.在Rt△B1BO中,∵BB1=,BO=1.∴∠BB1O=30°,从而∠OB1D1=60°,又B1D1=2,B1O1=OB1=1(O1为BO与EF的交点)∴△D1B1O1是直角三角形,即B1O⊥D1O1,∴B1O⊥平面D1EF.又B1O平面AB1C,∴平面D1EF⊥平面AB1C.1.棱长都是2的直平行六面体ABCD—A1B1C1D1中,∠BAD=60°,则对角线A1C与侧面DCC1D1所成角的正弦值为_____.【解】过A1作A1G⊥C1D1于G,由于该平行六面体是直平行六面体,∴A1G⊥平面D1C,连结CG,∠A1CG即为A1C与侧面DCC1D1所成的角.∵A1G=A1D1·sin∠A1D1G=2sin60°=2·=而AC==∴A1C=,∴sin∠A1CG=.【答案】2.E、F分别是正方形ABCD的边AB和CD的中点,EF、BD相交于O,以EF为棱将正方形折成直二面角,则∠BOD=_____.【解析】设正方形的边长为2a.则DO2=a2+a2=2a2OB2=a2+a2=2a2DB2=DF2+FB2=a2+4a2+a2=6a2∴cos∠DOB=∴∠DOB=120°3.如图9—44,已知斜三棱柱ABC—A1B1C1的各棱长均为2,侧棱与底面成的角,侧面ABB1A1垂直于底面,图9—44(1)证明:B1C⊥C1A.(2)求四棱锥B—ACC1A1的体积.(1)【证明】过B1作B1O⊥AB于O,∵面ABB1A1⊥底面ABC,面∴B1O⊥面ABC,∴∠B1BA是侧棱与底面所成角,∴∠B1BA=,又各棱长均为2,∴O为AB的中点,连CO,则CO⊥AB,而OB1∩CO=O,∴AB⊥平面B1OC,又B1C平面OB1C,∴B1C⊥AB,连BC1,∵BCC1B1为边长为2的菱形,∴B1C⊥BC1,而AB∩BC1=B,∴B1C⊥面ABC1∵A1C面ABC1∴B1C⊥AC1(2)【解】在Rt△BB1O中,BB1=2,BO=1,B1O=,V柱=Sh=·4·=3,∴=V柱=1,=V柱-=3-1=24.如图9—45,四棱锥P—ABCD的底面是边长为a的正方形,PA⊥底面ABCD,E为AB的中点,且PA=AB.图9—45(1)求证:平面PCE⊥平面PCD;(2)求点A到平面PCE的距离.(1)【证明】PA⊥平面ABCD,AD是PD在底面上的射影,又∵四边形ABCD为矩形,∴CD⊥AD,∴CD⊥PD,∵AD∩PD=D∴CD⊥面PAD,∴∠PDA为二面角P—CD—B的平面角,∵PA=PB=AD,PA⊥AD∴∠PDA=45°,取Rt△PAD斜边PD的中点F,则AF⊥PD,∵AF面PAD∴CD⊥AF,又PD∩CD=D∴AF⊥平面PCD,取PC的中点G,连GF、AG、EG,则GFCD又AECD,∴GFAE∴四边形AGEF为平行四边形∴AF∥EG,∴EG⊥平面PDC又EG平面PEC,∴平面PEC⊥平面PCD.(2)【解】由(1)知AF∥平面PEC,平面PCD⊥平面PEC,过F作FH⊥PC于H,则FH⊥平面PEC∴FH为F到平面PEC的距离,即为A到平面PEC的距离.在△PFH与△PCD中,∠P为公共角,而∠FHP=∠CDP=90°,∴△PFH∽△PCD.∴,设AD=2,∴PF=,PC=,∴FH=∴A到平面PEC的距离为.5.已知直四棱柱ABCD—A1B1C1D1的底面是菱形,对角线AC=2,BD=2,E、F分别为棱CC1、BB1上的点,且满足EC=BC=2FB.图9—46(1)求证:平面AEF⊥平面A1ACC1;(2)求异面直线EF、A1C1所成角的余弦值.(1)【证明】∵菱形对角线AC=2,BD=2∴BC=2,EC=2,FB=1,取AE中点M,连结MF,设BD与AC交于点O,MOECFB平面AEF⊥平面ACC1A1(2)在AA1上取点N,使AN=2,连结NE,则NEACA1C1故∠NEF为异面直线A1C1与EF所成的角,连结NF,在直角梯形NABF中易求得NF=,同理求得EF=.在△ENF中,cos∠NEF=,即EF与A1C1所成角的余弦值为.
【解题指导】在证明两平面垂直时,一般方法是先从现有的直线中寻找平面的垂线;若没有这样的直线,则可通过作辅助线来解决,而作辅助线则应有理论根据并且要有利于证明,不能随意添加.在有平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论