2024年九年级初中数学竞赛辅导讲义及习题解答 第19讲 转化灵活的圆中角_第1页
2024年九年级初中数学竞赛辅导讲义及习题解答 第19讲 转化灵活的圆中角_第2页
2024年九年级初中数学竞赛辅导讲义及习题解答 第19讲 转化灵活的圆中角_第3页
2024年九年级初中数学竞赛辅导讲义及习题解答 第19讲 转化灵活的圆中角_第4页
2024年九年级初中数学竞赛辅导讲义及习题解答 第19讲 转化灵活的圆中角_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE62024年九年级初中数学竞赛辅导讲义及习题解答第十九讲转化灵活的圆中角角是几何图形中最重要的元素,证明两直线位置关系、运用全等三角形法、相似三角形法都要涉及角,而圆的特征,赋予角极强的活性,使得角能灵活地互相转化.根据圆心角与圆周角的倍半关系,可实现圆心角与圆周角的转化;由同弧或等弧所对的圆周角相等,可将圆周角在大小不变的情况下,改变顶点在圆上的位置进行探索;由圆内接四边形的对角互补和外角等于内对角,可将与圆有关的角互相联系起来.熟悉以下基本图形、基本结论.注:根据顶点、角的两边与圆的位置关系,我们定义了圆心角与圆周角,类似地,当角的顶点在圆外或圆内,我们可以定义圆外角与圆内角,这两类角分别与它们的所夹弧度数有怎样的关系?读者可自行作一番探讨.【例题求解】【例1】如图,直线AB与⊙O相交于A,B再点,点O在AB上,点C在⊙O上,且∠AOC=40°,点E是直线AB上一个动点(与点O不重合),直线EC交⊙O于另一点D,则使DE=DO的点正共有个.思路点拨在直线AB上使DE=DO的动点E与⊙O有怎样的位置关系?分点E在AB上(E在⊙O内)、在BA或AB的延长线上(E点在⊙O外)三种情况考虑,通过角度的计算,确定E点位置、存在的个数.注:弧是联系与圆有关的角的中介,“由弧到角,由角看弧”是促使与圆有关的角相互转化的基本方法.【例2】如图,已知△ABC为等腰直角三形,D为斜边BC的中点,经过点A、D的⊙O与边AB、AC、BC分别相交于点E、F、M,对于如下五个结论:①∠FMC=45°;②AE+AF=AB;③;④2BM2=BF×BA;⑤四边形AEMF为矩形.其中正确结论的个数是()A.2个B.3个C.4个D.5个思路点拨充分运用与圆有关的角,寻找特殊三角形、特殊四边形、相似三角形,逐一验证.注:多重选择单选化是近年出现的一种新题型,解这类问题,需把条件重组与整合,挖掘隐合条件,作深入的探究,方能作出小正确的选择.【例3】如图,已知四边形ABCD外接⊙O的半径为5,对角线AC与BD的交点为E,且AB2=AE×AC,BD=8,求△ABD的面积.思路点拨由条件出发,利用相似三角形、圆中角可推得A为弧BD中点,这是解本例的关键.【例4】如图,已知AB是⊙O的直径,C是⊙O上的一点,连结AC,过点C作直线CD⊥AB于D(AD<DB),点E是AB上任意一点(点D、B除外),直线CE交⊙O于点F,连结AF与直线CD交于点G.(1)求证:AC2=AG×AF;(2)若点E是AD(点A除外)上任意一点,上述结论是否仍然成立?若成立.请画出图形并给予证明;若不成立,请说明理由.思路点拨(1)作出圆中常用辅助线证明△ACG∽△AFC;(2)判断上述结论在E点运动的情况下是否成立,依题意准确画出图形是关键.注:构造直径上90°的圆周角,是解与圆相关问题的常用辅助线,这样就为勾股定理的运用、相似三角形的判定创造了条件.【例5】如图,圆内接六边形ABCDEF满足AB=CD=EF,且对角线AD、BE、CF相交于一点Q,设AD与CF的交点为P.求证:(1);(2).思路点拨解本例的关键在于运用与圆相关的角,能发现多对相似三角形.证明△QDE∽△ACF;(2)易证,通过其他三角形相似并结合(1)把非常规问题的证明转化为常规问题的证明.注:有些几何问题虽然表面与圆无关,但是若能发现隐含的圆,尤其是能发现共圆的四点,就能运用圆的丰富性质为解题服务,确定四点共圆的主要方法有:(1)利用圆的定义判定;(2)利用圆内接四边形性质的逆命题判定.学历训练1.一条弦把圆分成2:3两部分,那么这条弦所对的圆周角的度数为.2.如图,AB是⊙O的直径,C、D、E都是⊙O上的一点,则∠1+∠2=.3.如图,AB是⊙O的直径,弦CD⊥AB,F是CG的中点,延长AF交⊙O于E,CF=2,AF=3,则EF的长为.4.如图,已知△ABC内接于⊙O,AB+AC=12,AD⊥BC于D,AD=3,设⊙O的半径为,AB的长为,用的代数式表示,=.5.如图,ABCD是⊙O的内接四边形,延长BC到E,已知∠BCD:∠ECD=3:2,那么∠BOD等于()A.120°B.136°C.144°D.150°6.如图,⊙O中,弦AD∥BC,DA=DC,∠AOC=160°,则∠BOC等于()A.20°B.30°C.40°D.50°7.如图,BC为半圆O的直径,A、D为半圆O上两点,AB=,BC=2,则∠D的度数为()A.60°B.120°C.135°D.150°⌒⌒8.如图,⊙O的直径AB垂直于弦CD,点P是弧AC上一点(点P不与A、C两点重合),连结PC、PD、PA、AD,点E在AP的延长线上,PD与AB交于点F.给出下列四个结论:①CH2=AH×BH;②AD=AC;③AD2=DF×DP;④∠⌒⌒A.1B.2C.3D.49.如图,已知B正是△ABC的外接圆O的直径,CD是△ABC的高.(1)求证:AC·BC=BE·CD;已知CD=6,AD=3,BD=8,求⊙O的直径BE的长.10.如图,已知AD是△ABC外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连结FB,FC.(1)求证:FB=FC;(2)求证:FB2=FAFD;(3)若AB是△ABC的外接圆的直径,∠EAC=120°,BC=6cm,求AD的长.11.如图,B、C是线段AD的两个三等分点,P是以BC为直径的圆周上的任意一点(B、C点除外),则tan∠APB·tan∠CPD=.12.如图,在圆内接四边形ABCD中,AB=AD,∠BAD=60°,AC=,则四边形ABCD的面积为.13.如图,圆内接四边形ABCD中,∠A=60°,∠B=90°,AD=3,CD=2,则BC=.⌒⌒14.如图,AB是半圆的直径,D是AC的中点,∠B=40°,则∠A等于()A.60°B.50°C.80°D.70°15.如图,已知ABCD是一个以AD为直径的圆内接四边形,AB=5,PC=4,分别延长AB和DC,它们相交于P,若∠APD=60°,则⊙O的面积为()A.25πB.16πC.15πD.13π(2001年绍兴市竞赛题)16.如图,AD是Rt△ABC的斜边BC上的高,AB=AC,过A、D两点的圆与AB、AC分别相交于点E、F,弦EF与AD相交于点G,则图中与△GDE相似的三角形的个数为()A.5B.4C.3D.217.如图,已知四边形ABCD外接圆⊙O的半径为2,对角线AC与BD的交点为E,AE=EC,AB=AE,且BD=,求四边形ABCD的面积.18.如图,已知ABCD为⊙O的内接四边形,E是BD上的一点,且有∠BAE=∠DAC.求证:(1)△ABE∽△ACD;(2)ABDC+AD·BC=AC·BD.19.如图,已知P是⊙O直径AB延长线上的一点,直线PCD交⊙O于C、D两点,弦DF⊥AB于点H,CF交AB于点E.(1)求证:PA·PB=PO·PE;(2)若DE⊥CF,∠P=15°,⊙O的半径为2,求弦CF的长.⌒20.如图,△ABC内接于⊙O,BC=4,S△ABC=,∠B为锐角,且关于的方程有两个相等的实数根,D是劣弧AC上任一点(点D不与点A、C重合),DE平分∠ADC,交⊙O于点E,交AC于点F.⌒(1)求∠B的度数;(2)求CE的长;(3)求证:DA、DC的长是方程的两个实数根.参考答案第二十讲直线与圆直线与圆的位置有相交、相切、相离三种情形,既可从直线与圆交点的个数来判定,也可以从圆心到直线的距离与圆的半径的大小比较来考察.讨论直线与圆的位置关系的重点是直线与圆相切,直线与圆相切涉及切线的性质和判定、切线长定理、弦切角的概念和性质、切割线定理等丰富的知识,这些丰富的知识对应着以下基本图形、基本结论:注:点与圆的位置关系和直线与圆的位置关系的确定有共同的精确判定方法,即量化的方法(距离与半径的比较),我们称“由数定形”,勾股定理的逆定理也具有这一特点.【例题求解】【例1】如图,AB是半圆O的直径,CB切⊙O于B,CD切⊙O于D,交BA的延长线于E,若EA=1,ED=2,则BC的长为.思路点拨从C点看,可用切线长定理,从E点看,可用切割线定理,而连OD,则OD⊥EC,又有相似三角形,先求出⊙O的半径.注:连结圆心与切点是一条常用的辅助线,利用切线的性质可构造出直角三角形,在圆的证明与计算中有广泛的应用.【例2】如图,AB、AC与⊙O相切于B、C,∠A=50°,点P是圆上异于B、C的一个动点,则∠BPC的度数是()A.65°B.115°C.60°和115°D.130°和50°(山西省中考题)思路点拨略【例3】如图,以等腰△ABC的一腰AB为直径的⊙O交BC于D,过D作DE⊥AC于E,可得结论:DE是⊙O的切线.问:(1)若点O在AB上向点B移动,以O为圆心,OB为半径的圆的交BC于D,DE⊥AC的条件不变,那么上述结论是否还成立?请说明理由;(2)如果AB=AC=5cm,sinA=,那么圆心O在AB的什么位置时,⊙O与AC相切?(2001年黑龙江省中考题)思路点拨(1)是结论探索题,(2)是条件探索题,从切线的判定方法和性质入手,分别画图,方能求解.【例4】如图,已知Rt△ABC中,AC=5,BC=12,∠ACB=90°,P是AB边上的动点(与点A、B不重合),Q是BC边上的动点(与点B、C不重合).(1)当PQ∥AC,且Q为BC的中点时,求线段PC的长;(2)当PQ与AC不平行时,△CPQ可能为直角三角形吗?若有可能,求出线段CQ的长的取值范围;若不可能,请说明理由.(广州市中考题)思路点拨对于(2),易发现只有点P能作为直角顶点,建立一个研究的模型——以CQ为直径的圆与线段AB的交点就是符合要求的点P,从直线与圆相切特殊位置入手,以此确定CQ的取值范围.注:判定一直线为圆的切线是平面几何中一种常见问题,判定的基本方法有:(1)从直线与圆交点个数入手;(2)利用角证明,即证明半径和直线垂直;(3)运用线段证明,即证明圆心到直线的距离等于半径.一个圆的问题,从不同的条件出发,可有不同的添辅助线方式,进而可得不同的证法,对于分层次设问的问题,需整体考虑;【例5】如图,在正方形ABCD中,AB=1,EQ\o(\s\up8(︵),\s\do1(AC))是以点B为圆心,AB长为半径的圆的一段弧,点E是边AD上的任意一点(点E与点A、D不重合),过E作EQ\o(\s\up8(︵),\s\do1(AC))所在圆的切线,交边DC于点F,G为切点.(1)当∠DEF=45°时,求证点G为线段EF的中点;(2)设AE=x,FC=y,求y关于x的函数解析式,并写出函数的定义域;(3)将△DEF沿直线EF翻折后得△D1EF,如图,当EF=时,讨论△AD1D与△ED1F是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由.思路点拨图中有多条⊙B的切线,由切线长定理可得多对等长线段,这是解(1)、(2)问的基础,对于(3),由(2)求出的值,确定E点位置,这是解题的关键.注:本例将几何图形置于直角坐标系中,综合了圆的有关性质、相似三角形的判定与性质、切线的判定与性质、等边三角形的判定与性质等丰富的知识,并结合了待定系数法、数形互助等思想方法,具有较强的选拔功能.学力训练1.如图,AB为⊙O的直径,P点在AB延长线上,PM切⊙O于M点,若OA=,FM=,那么△PMB的周长为.2.PA、PB切⊙O于A、B,∠APB=78°,点C是⊙O上异于A、B的任意一点,则∠ACB=.3.如图,EB、EC是⊙O的两条切线,B、C是切点,A、D是⊙O上两点,如果∠F=46°,∠DCF=32°,则∠A的度数是.4.如图,以△ABC的边AB为直径作⊙O交BC于D,过点D作⊙O的切线交AC于E,要使DE⊥AC,则△ABC的边必须满足的条件是.5.、表示直线,给出下列四个论断:①∥;②切⊙O于点A;③切⊙O于点B;④AB是⊙O的直径.若以其中三个论断作为条件,余下的一个作为结论,可以构造出一些命题,在这些命题中,正确命题的个数为()1B.2C.3D.46.如图,圆心O在边长为的正方形ABCD的对角线BD上,⊙O过B点且与AD、DC边均相切,则⊙O的半径是()A.B.C.D.7.直角梯形ABCD中,AD∥BC,∠B=90°,AD+BC<DC,若腰DC上有一点P,使AP⊥BP,则这样的点()A.不存在B.只有一个C.只有两个D.有无数个⌒⌒8.如图,圆内接△ABC的外角∠ACH的平分线与圆交于D点,DP⊥AC于P,DH⊥BH于H,下列结论:①CH=CP;②AD=DB;③⌒⌒A.①②④B.①③④C.②③④D.①②③9.如图,⊙O是△ABC的外接圆,已知∠ACB=45°,∠ABC=120°,⊙O的半径为1,(1)求弦AC、AB的长;(2)若P为CB的延长线上一点,试确定P点的位置,使PA与⊙O相切,并证明你的结论.10.如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB于E,且PC2=PE·PO.(1)求证:PC是⊙O的切线;(2)若OE:EA=1:2,且PA=6,求⊙O的半径;(3)求sin∠PCA的值.11.(1)如图a,已知直线AB过圆心O,交⊙O于A、B,直线AF交⊙O于F(不与B重合),直线交⊙O于C、D,交AB于E且与AF垂直,垂足为G,连AC、AD,求证:①∠BAD=∠CAG;②AC·AD=AE·AF.(2)在问题(1)中,当直线向上平行移动与⊙O相切时,其他条件不变.①请你在图b中画出变化后的图形,并对照图a标记字母;②问题(1)中的两个结论是否成立?如果成立,请给出证明;如不成立,请说明理由.12.如图,在Rt△ABC中,∠A=90°,⊙O分别与AB、AC相切于点E、F,圆心O在BC上,若AB=a,AC=b,则⊙O的半径等于.13.如图,AB是半圆O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合),点Q在半圆O上运动,且总保持PQ=PO,过点Q作⊙O的切线交BA的延长线于点C.(1)当∠QPA=60°时,请你对△QCP的形状做出猜想,并给予证明.(2)当QP⊥AB时,△QCP的形状是三角形.(3)由(1)、(2)得出的结论,请进一步猜想当点P在线段AM上运动到任何位置时,△QCP一定是三角形.14.如图,已知AB为⊙O的直径,CB切⊙O于B,CD切⊙O于D,交BA的延长线于E,若AB=3,ED=2,则BC的长为()A.2B.3C.3.5D.4⌒⌒15.如图,PA、PB是⊙O的两条切线,A、B切点,直线OP交⊙O于C、D,交AB于E,AF为⊙O的直径,下列结论:(1)∠APB=∠AOP;(2)BC=DF;(3)PC·⌒⌒A.3个B.2个C.1个D.0个16.如图,已知△ABC,过点A作外接圆的切线交BC的延长线于点P,,点D在AC上,且,延长PD交AB于点E,则的值为()A.B.C.D.⌒⌒⌒⌒(1)当点C为AB的中点时(如图1),求证:CF=EF;(2)当点C不是AB的中点时(如图2),试判断CF与EF的相等关系是否保持不变,并证明你的结论.18.如图,△ABC中,∠C=90°,AC=6,BC=3,点D在AC边上,以D为圆心的⊙D与AB切于点E.(1)求证:△ADE∽△ABC;(2)设⊙D与BC交于点F,当CF=2时,求CD的长;(3)设CD=,试给出一个值,使⊙D与BC没有公共点,并说明你给出的值符合的要求.19.如图,PA、PB与⊙O切于A、B两点,PC是任意一条割线,且交⊙O于点E、C,交AB于点D.求证:20.如图,⊙Oˊ与x轴交于A、B两点,与y轴交于C、D两点,圆心Oˊ的坐标是(1,一1),半径是,(1)求A、B、C、D四点的坐标;(2)求经过点D的切线的解析式;(3)问过点A的切线与过点D的切线是否垂直?若垂直,请写出证明过程;若不垂直,试说明理由.21.当你进入博物馆的展览厅时,你知道站在何处观赏最理想?如图,设墙壁上的展品最高处点P距离地面a米,最低处点Q距离地面b米,观赏者的眼睛点E距离地面m米,当过P、Q、E三点的圆与过点E的水平线相切于点E时,视角∠PEQ最大,站在此处观赏最理想.(1)设点E到墙壁的距离为x米,求a、b、m,x的关系式;(2)当a=2.5,b=2,m=1.6时,求:(a)点E和墙壁距离x米;(b)最大视角∠PER的度数(精确到1度).参考答案第二十一讲从三角形的内切圆谈起和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.三角形的内切圆的圆心叫做这个三角形的内心,圆外切三角形、圆外切四边形有下列重要性质:1.三角形的内心是三角形的三内角平分线交点,它到三角形的三边距离相等;2.圆外切四边形的两组对边之和相等,其逆亦真,是判定四边形是否有外切圆的主要方法.当圆外切三角形、四边形是特殊三角形时,就得到隐含丰富结论的下列图形:注:设Rt△ABC的各边长分别为a、b、c(斜边),运用切线长定理、面积等知识可得到其内切圆半径的不同表示式:(1);(2).请读者给出证【例题求解】【例1】如图,在Rt△ABC中,∠C=90°°,BC=5,⊙O与Rt△ABC的三边AB、BC、AC分相切于点D、E、F,若⊙O的半径r=2,则Rt△ABC的周长为.思路点拨AF=AD,BE=BD,连OE、OF,则OECF为正方形,只需求出AF(或AD)即可.【例2】如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,AC、BD相交于N点,连结ON,NP,下列结论:①四边形ANPD是梯形;②ON=NP:③DP·PC为定值;④FA为∠NPD的平分线,其中一定成立的是()A.①②③B.②③④C.①③④D.①④思路点拨本例综合了切线的性质、切线长定理、相似三角形,判定性质等重要几何知识,注意基本辅助线的添出、基本图形识别、等线段代换,推导出NP∥AD∥BC是解本例的关键.【例3】如图,已知∠ACP=∠CDE=90°,点B在CE上,CA=CB=CD,过A、C、D三点的圆交AB于F,求证:F为△CDE的内心.(全国初中数学联赛试题)思路点拨连CF、DF,即需证F为△CDE角平分线的交点,充分利用与圆有关的角,将问题转化为角相等问题的证明.【例4】如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AB=BC=1,以AB为直径作半圆O切CD于E,连结OE,并延长交AD的延长线于F.(1)问∠BOZ能否为120°,并简要说明理由;(2)证明△AOF∽△EDF,且;(3)求DF的长.思路点拨分解出基本图形,作出基本辅助线.(1)若∠BOZ=120°,看能否推出矛盾;(2)把计算与推理融合;(3)把相应线段用DF的代数式表示,利用勾股定理建立关于DF的一元二次方程.注:如图,在直角梯形ABCD中,若AD+BC=CD,则可得到应用广泛的两个性质:(1)以边AB为直径的圆与边CD相切;(2)以边CD为直径的圆与边AB相切.类似地,三角形三条中线的交点叫三角形的重心,三角形三边高所在的直线的交点叫三角形的垂心.外心、内心、垂心、重心统称三角形的四心,它们处在三角而中的特殊位置上,有着丰富的性质,在解题中有广泛的应用.【例5】如图,已知Rt△ABC中,CD是斜边AB上的高,O、O1、O2分别是△ABC;△ACD、△BCD的角平分线的交点,求证:(1)O1O⊥CO2;(2)OC=O1O2.(武汉市选拔赛试题)思路点拨在直角三角形中,斜边上的高将它分成的两个直角三角形和原三角形相似,得对应角相等,所以通过证交角为90°的方法得两线垂直,又利用全等三角形证明两线段相等.学力训练1.如图,已知圆外切等腰梯形ABCD的中位线EF=15cm,那么等腰梯形ABCD的周长等于=cm.2.如图,在直角,坐标系中A、B的坐标分别为(3,0)、(0,4),则Rt△ABO内心的坐标是.3.如图,梯形ABCD中,AD∥BC,DC⊥BC,AB=8,BC=5,若以AB为直径的⊙O与DC相切于E,则DC=.4.如图,⊙O为△ABC的内切圆,∠C=90°,AO的延长线交BC于点D,AC=4,CD=1,则⊙O的半径等于()A.B.C.D.5.如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为()A.3cmB.7cmC.3cm或7cmD.2cm6.如图,△ABC中,内切圆O和边B、CA、AB分别相切于点D、EF,则以下四个结论中,错误的结论是()A.点O是△DEF的外心B.∠AFE=(∠B+∠C)C.∠BOC=90°+∠AD.∠DFE=90°一∠B7.如图,BC是⊙O的直径,AB、AD是⊙O的切线,切点分别为B、P,过C点的切线与AD交于点D,连结AO、DO.(1)求证:△ABO∽△OCD;(2)若AB、CD是关于x的方程的两个实数根,且S△ABO+S△OCD=20,求m的值.8.如图,已知AB是⊙O的直径,BC是⊙O的切线,OC与⊙O相交于点D,连结AD并延长,BC相交于点E.(1)若BC=,CD=1,求⊙O的半径;(2)取BE的中点F,连结DF,求证:DF是⊙O的切线;(3)过D点作DG⊥BC于G,OG与DG相交于点M,求证:DM=GM.9.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=13cm,BC=16cm,CD=5cm,AB为⊙O的直径,动点P沿AD方向从点A开始向点D以1cm/秒的速度运动,动点Q沿CB方向从点C开始向点B以2cm/秒的速度运动,点P、Q分别从A、C两点同时出发,当其中一点停止时,另一点也随之停止运动.(1)求⊙O的直径;(2)求四边形PQCD的面积y关于P、Q运动时间t的函数关系式,并求当四边形PQCD为等腰梯形时,四边形PQCP

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论