版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
培优特训专项1.4与尺规作图有关的计算和证明的综合应用1.(2020•建湖县模拟)如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于AB的长为半径画弧,相交于两点M,N;②作直线MN交AC于点D,连接BD.若∠A=25°,则∠CDB=()A.25° B.50° C.60° D.90°2.(2021春•龙泉驿区期末)如图,在△ABC中,线段AB的垂直平分线与AC相交于点D,连接BD,边AC的长为12cm,边BC的长为7cm,则△BCD的周长为()A.18cm B.19cm C.20cm D.21cm3.(2021春•和平区校级期中)如图,在△ABC中,∠A=45°,∠B=30°.用直尺和圆规在边AB上确定一点D.则∠ACD的大小为()A.60° B.75° C.65° D.70°4.(2020•宝安区二模)如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,连接MN,交AB于点H,以点H为圆心,HA的长为半径作的弧恰好经过点C,以点B为圆心,BC的长为半径作弧交AB于点D,连接CD,若∠A=22°,则∠BDC=()A.52° B.55° C.56° D.60°5.(2021•长春一模)如图,∠AOB=30°.按下列步骤作图:①在射线OA上取一点C,以点O为圆心,OC长为半径作圆弧DE,交射线OB于点F,连接CF;②以点F为圆心,CF长为半径作圆弧,交弧DE于点G;③连接FG、CG,作射线OG.根据以上作图过程及所作图形,下列结论中错误的是()A.∠AOG=60° B.OF垂直平分CG C.OG=CG D.OC=2FG6.(2020秋•鄞州区期末)如图,△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G,若∠BAC=100°,则∠EAG的度数是()A.10° B.20° C.30° D.40°7.(2021秋•邓州市期末)在△AMN中,∠MAN>90°,AM的垂直平分线交MN于B,交AM于E,AN的垂直平分线交MN于C,交AN于F.(1)若AM=AN,∠MAN=120°,则△ABC的形状是;(2)去掉(1)中的“∠MAN=120°”的条件,其他不变,判断△ABC的形状,并证明你的结论;(3)当∠M与∠N满足怎样的数量关系时,△ABC是等腰三角形?直接写出所有可能的情况.8.(秋•密云区期末)已知如图,点A、点B在直线l异侧,以点A为圆心,AB长为半径作弧交直线l于C、D两点.分别以C、D为圆心,AB长为半径作弧,两弧在l下方交于点E,连接AE.(1)根据题意,利用直尺和圆规补全图形;(2)证明:l垂直平分AE.9.(2022春•郓城县期末)如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=40°,求∠DBC的度数;(3)若AE=6,△CBD的周长为20,求△ABC的周长.10.(2021秋•思南县校级月考)如图,在△ABC中,AC边的垂直平分线DM交AC于D,CB边的垂直平分线EN交BC于E,DM与EN相交于点F.(1)若△CMN的周长为16cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.11.(2021春•叶县期末)如图,在△ABC中,∠B=30°,∠C=40°.(1)尺规作图:①作边AB的垂直平分线交BC于点D;②连接AD,作∠CAD的平分线交BC于点E;(要求:保留作图痕迹,不写作法)(2)在(1)所作的图中,求∠DAE的度数.12.(2021秋•洪江市期末)如图,直线l与m分别是△ABC边AC和BC的垂直平分线,l与m分别交边AB于点D和点E.(1)若AB=10,则△CDE的周长是多少?为什么?(2)若∠ACB=125°,求∠DCE的度数.13.(2021秋•兴山县期末)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.(1)若∠B=70°,则∠NMA的度数是;(2)探究∠B与∠NMA的关系,并说明理由;(3)连接MB,若AB=8cm,△MBC的周长是14cm.①求BC的长;②在直线MN上是否存在点P,使PB+CP的值最小?若存在,标出点P的位置并求PB+CP的最小值;若不存在,说明理由.培优特训专项1.4与尺规作图有关的计算和证明的综合应用1.(2020•建湖县模拟)如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于AB的长为半径画弧,相交于两点M,N;②作直线MN交AC于点D,连接BD.若∠A=25°,则∠CDB=()A.25° B.50° C.60° D.90°【答案】B【解答】解:∵根据做法可知:MN是AB的垂直平分线,∴AD=BD,∵△ADC的周长为10,∴AD+CD+AC=10,∴BD+DC+AC=10,∴AC+BC=10,∵AB=7,∴△ABC的周长为AB+AC+BC=7+10=17,故选:B.2.(2021春•龙泉驿区期末)如图,在△ABC中,线段AB的垂直平分线与AC相交于点D,连接BD,边AC的长为12cm,边BC的长为7cm,则△BCD的周长为()A.18cm B.19cm C.20cm D.21cm【答案】B【解答】解:∵线段AB的垂直平分线与AC相交于点D,∴DA=DB,∴△BCD的周长=BC+CD+DB=BC+CD+DA=BC+AC,∵AC=12cm,BC=7cm,∴△BCD的周长=BC+AC=12+7=19(cm),故选:B.3.(2021春•和平区校级期中)如图,在△ABC中,∠A=45°,∠B=30°.用直尺和圆规在边AB上确定一点D.则∠ACD的大小为()A.60° B.75° C.65° D.70°【答案】B【解答】解:由尺规作图可知,线段BC的垂直平分线交AB于D,∴DC=DB,∴∠DCB=∠B=30°,∵∠A=45°,∠B=30°,∴∠ACB=180°﹣∠A﹣∠B=105°,∴∠ACD=∠ACB﹣∠DCB=75°,故选:B4.(2020•宝安区二模)如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,连接MN,交AB于点H,以点H为圆心,HA的长为半径作的弧恰好经过点C,以点B为圆心,BC的长为半径作弧交AB于点D,连接CD,若∠A=22°,则∠BDC=()A.52° B.55° C.56° D.60°【答案】C【解答】解:连接CH,由题意得,直线MN是线段AB的垂直平分线,∴AH=BH,∵CH=AH,∴CH=AB,∴∠ACB=90°,∵∠A=22°,∴∠ACH=∠A=22°,∴∠BCH=∠B=68°,∵BC=BD,∴∠BDC=∠BCD=(180°﹣68°)=56°,故选:C.5.(2021•长春一模)如图,∠AOB=30°.按下列步骤作图:①在射线OA上取一点C,以点O为圆心,OC长为半径作圆弧DE,交射线OB于点F,连接CF;②以点F为圆心,CF长为半径作圆弧,交弧DE于点G;③连接FG、CG,作射线OG.根据以上作图过程及所作图形,下列结论中错误的是()A.∠AOG=60° B.OF垂直平分CG C.OG=CG D.OC=2FG【答案】D【解答】解:由作法得OC=OF=OG,FG=FC,则OF垂直平分CG,所以B选项的结论正确;∵C点与G点关于OF对称,∴∠FOG=∠FOC=30°,∴∠AOG=60°,所以A选项的结论正确;∴△OCG为等边三角形,∴OG=CG,所以C选项的结论正确;在Rt△OCM中,∵∠COM=30°,∴OC=2CM,∵CF>CM,FC=FG,∴OC≠2FG,所以D选项的结论错误.故选:D.6.(2020秋•鄞州区期末)如图,△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G,若∠BAC=100°,则∠EAG的度数是()A.10° B.20° C.30° D.40°【答案】B【解答】解:∵∠BAC=100°,∴∠C+∠B=180°﹣100°=80°,∵DE是AB的垂直平分线,∴EA=EB,∴∠EAB=∠B,同理∠GAC=∠C,∴∠EAB+∠GAC=∠C+∠B=80°,∴∠EAG=100°﹣80°=20°,故选:B7.(2021秋•邓州市期末)在△AMN中,∠MAN>90°,AM的垂直平分线交MN于B,交AM于E,AN的垂直平分线交MN于C,交AN于F.(1)若AM=AN,∠MAN=120°,则△ABC的形状是;(2)去掉(1)中的“∠MAN=120°”的条件,其他不变,判断△ABC的形状,并证明你的结论;(3)当∠M与∠N满足怎样的数量关系时,△ABC是等腰三角形?直接写出所有可能的情况.【解答】解:(1)等边三角形,理由:∵AM=AN,∠MAN=120°,∴∠M=∠N=30°,∵BE是线段AM的垂直平分线,∴AB=BM,∴∠MAB=∠M=30°,∴∠ABC=∠M+∠MAB=60°,同理,CA=NC,∴∠NAC=∠N=30°,∴∠ACM=∠N+∠NAC=60°,∴△ABC为等边三角形,故答案为:等边三角形;(2)△ABC是等腰三角形,理由:∵AM=AN,∴∠M=∠N,∵∠MAB=∠M,∠ABC=∠M+∠MAB,∠NAC=∠N,∠ACB=∠N+∠NAC,∴∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形;(3)当∠M=∠N时,AB=AC;当2∠M+∠N=90°时,∠BAN=90°,∴CF∥BN,∵CF垂直平分AN,∴AF=FN,∴CN=BC,∴CA=NB=BC,同理,当∠M+2∠N=90°时,BA=BC,综上所述,当∠M=∠N、2∠M+∠N=90°、∠M+2∠N=90°时,△ABC是等腰三角形.②当点P与点M重合时,PB+CP的值最小,最小值是8cm.8.(秋•密云区期末)已知如图,点A、点B在直线l异侧,以点A为圆心,AB长为半径作弧交直线l于C、D两点.分别以C、D为圆心,AB长为半径作弧,两弧在l下方交于点E,连接AE.(1)根据题意,利用直尺和圆规补全图形;(2)证明:l垂直平分AE.【答案】略【解答】解:(1)如图所示:(2)证明:解法一:如下图:连接AC,CE,ED,AD,∵AC=AD=AB,CE=ED=AB,∴AC=CE,AD=DE,在△ACD和△ECD中∵,∴△ACD≌△ECD(SSS),∴∠ACD=∠ECD,∵AC=CE,∴l垂直平分AE.解法二:如下图:连接AC,CE,ED,AD,∵AC=AD=AB,CE=ED=AB,∴AC=CE,AD=DE,∴l垂直平分AE.9.(2022春•郓城县期末)如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=40°,求∠DBC的度数;(3)若AE=6,△CBD的周长为20,求△ABC的周长.【解答】解:(1)证明:∵AB的垂直平分线MN交AC于点D,∴DB=DA,∴△ABD是等腰三角形;(2)∵△ABD是等腰三角形,∠A=40°,∴∠ABD=∠A=40°,∠ABC=∠C=(180°﹣40°)÷2=70°∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°;(3)∵AB的垂直平分线MN交AC于点D,AE=6,∴AB=2AE=12,∵△CBD的周长为20,∴AC+BC=20,∴△ABC的周长=AB+AC+BC=12+20=32.10.(2021秋•思南县校级月考)如图,在△ABC中,AC边的垂直平分线DM交AC于D,CB边的垂直平分线EN交BC于E,DM与EN相交于点F.(1)若△CMN的周长为16cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.【解答】解:(1)∵DM是AC边的垂直平分线,∴MA=MC,同理,NC=NB,∵△CMN的周长为16cm,∴MC+MN+NC=16cm,∴AB=AM+MN=BN=16cm;(2)∵AC边的垂直平分线DM交AC于D,CB边的垂直平分线EN交BC于E,∴MD⊥AC,NE⊥BC,∴∠ACB=180°﹣∠MFN=110°,∴∠A+∠B=70°,∵MA=MC,NB=NC,∴∠MCA=∠A,∠NCB=∠B,∴∠MCN=∠ACB﹣(∠MCA+∠NCB)=∠ACB﹣(∠A+∠B)=110°﹣70°=40°.11.(2021春•叶县期末)如图,在△ABC中,∠B=30°,∠C=40°.(1)尺规作图:①作边AB的垂直平分线交BC于点D;②连接AD,作∠CAD的平分线交BC于点E;(要求:保留作图痕迹,不写作法)(2)在(1)所作的图中,求∠DAE的度数.【答案】略【解答】解:(1)如图,点D,射线AE即为所求.(2)∵DF垂直平分线段AB,∴DB=DA,∴∠DAB=∠B=30°,∵∠C=40°,∴∠BAC=180°﹣30°﹣40°=110°,∴∠CAD=110°﹣30°=80°,∵AE平分∠DAC,∴∠DAE=∠DAC=40°.12.(2021秋•洪江市期末)如图,直线l与m分别是△ABC边AC和BC的垂直平分线,l与m分别交边AB于点D和点E.(1)若AB=10,则△CDE的周长是多少?为什么?(2)若∠ACB=125°,求∠DCE的度数.【解答】解:(1)△CDE的周长
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江西师范大学科学技术学院《建筑设备施工组织设计》2023-2024学年第一学期期末试卷
- 湖南中医药大学湘杏学院《水电站建筑物》2023-2024学年第一学期期末试卷
- 湖南工艺美术职业学院《多媒体信息处理与检索技术》2023-2024学年第一学期期末试卷
- 衡阳科技职业学院《统计软件操作》2023-2024学年第一学期期末试卷
- 浙江师范大学《能源与动力工程测试技术》2023-2024学年第一学期期末试卷
- 长春师范大学《卫生检验综合技术》2023-2024学年第一学期期末试卷
- 榆林职业技术学院《太阳能热利用技术》2023-2024学年第一学期期末试卷
- 使用二手设备节约资本开支
- 实践学习实施报告
- 业务操作-2018-2019年房地产经纪人《房地产经纪业务操作》真题汇编
- 特色酒吧方案计划书
- 重庆市南开中学2023-2024学年中考三模英语试题含答案
- 2023年上海高中物理合格考模拟试卷一含详解
- 2022版义务教育(地理)课程标准(附课标解读)
- 2024年滑雪用品行业分析报告及未来发展趋势
- 经方治疗脑梗塞的体会
- 新版DFMEA基础知识解析与运用-培训教材
- 制氮机操作安全规程
- 衡水市出租车驾驶员从业资格区域科目考试题库(全真题库)
- 护理安全用氧培训课件
- 《三国演义》中人物性格探析研究性课题报告
评论
0/150
提交评论