![二次函数求面积_第1页](http://file4.renrendoc.com/view2/M03/2E/20/wKhkFmYk3TiADg5-AAAqc6KH-vk846.jpg)
![二次函数求面积_第2页](http://file4.renrendoc.com/view2/M03/2E/20/wKhkFmYk3TiADg5-AAAqc6KH-vk8462.jpg)
![二次函数求面积_第3页](http://file4.renrendoc.com/view2/M03/2E/20/wKhkFmYk3TiADg5-AAAqc6KH-vk8463.jpg)
![二次函数求面积_第4页](http://file4.renrendoc.com/view2/M03/2E/20/wKhkFmYk3TiADg5-AAAqc6KH-vk8464.jpg)
![二次函数求面积_第5页](http://file4.renrendoc.com/view2/M03/2E/20/wKhkFmYk3TiADg5-AAAqc6KH-vk8465.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数求面积二次函数中常见图形的面积问题(1)1、说出如何表示各图中阴影部分的面积?xyOxyOABD图二ExyOABC图一xyOAB图三PPxxyOMENA图五OxyDC图四xyODCEB图六例2.解答下列问题:如图1,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)求△CAB的铅垂高CD及S△CAB;(3)设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使S△PAB=S△CAB,若存在,求出P点的坐标;若不存在,请说明理由.xxCOyABD11图1BBC铅垂高水平宽ha图2A1.(2013哈尔滨,24,6分)某水渠的横截面呈抛物线形,水面的宽为AB(单位:米),现以AB所在直线为x轴,以抛物线的对称轴为y轴建立如图所示的平面直角坐标系,设坐标原点为O,已知AB=8米,设抛物线解析式为y=ax2-4(1)求a的值;(2)点C(-1,m)是抛物线上一点,点C关于原点O的对称点为点D,连接CD、BC、BD,求△BCD的面积.2、抛物线与轴交与A、B(点A在B右侧),与轴交与点C,D为抛物线的顶点,连接BD,CD,(1)求四边形BOCD的面积.(2)求△BCD的面积.(提示:本题中的三角形没有横向或纵向的边,可以通过添加辅助线进行转化,把你想到的思路在图中画出来,并选择其中的一种写出详细的解答过程)
3.已知二次函数与轴交于A、B两点(A在B的左边),与y轴交于点C,顶点为P.(1)求A、B、C、P的坐标,并求出一个刚刚提出的图形面积;CPOABy(2)在抛物线上(除点CCPOABy若存在,请写出点N的坐标;若不存在,请说明理由。AyBOC变式一图变式一:在抛物线的对称轴上是否存点N,使得AyBOC变式一图4.如图1,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为,AE为,则关于的函数图象大致是图1(D)(图1(D)5.(10分)(2013•佛山)如图①,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).二次函数中常见图形的的面积最值问题(2)例3.如图1,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存\2.如图,二次函数图象与轴交于A,B两点(A在B的左边),与轴交于点C,顶点为M,图象的对称轴为直线,点是抛物线上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 五年级数学上册苏教版《钉子板上的多边形》听评课记录
- 八年级数学上册 14.3 因式分解 14.3.1 提公因式法听评课记录 新人教版
- 湘教版数学七年级上册2.4《整式》听评课记录
- 青岛版数学七年级下册12.1《平方差公式》听评课记录
- 鲁教版地理六年级下册7.4《俄罗斯》听课评课记录1
- 人民版九年级政治全册第三单元第八课依法治国第3-4喜中有忧我们共同的责任听课评课记录
- 中图版地理八年级下册7.4《巴西》听课评课记录
- 铝合金窗产品质量监督抽查实施细则
- 小学二年级数学口算练习题
- 一年级英语听评课记录
- 一年级下册劳动《变色鱼》课件
- 商务星球版地理八年级下册全册教案
- 天津市河西区2024-2025学年四年级(上)期末语文试卷(含答案)
- 2025年空白离婚协议书
- 校长在行政会上总结讲话结合新课标精神给学校管理提出3点建议
- 北京市北京四中2025届高三第四次模拟考试英语试卷含解析
- 2024年快递行业无人机物流运输合同范本及法规遵循3篇
- T-CSUS 69-2024 智慧水务技术标准
- 2025年护理质量与安全管理工作计划
- 地下商业街的规划设计
- 2024-2030年全球及中国低密度聚乙烯(LDPE)行业需求动态及未来发展趋势预测报告
评论
0/150
提交评论