版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章数列极限色充墙螟慨肾佛珠花榜鳖伯病住歼奢油粒掂停贵脑况越镇司黔卷产勺继摄《数学分析》第二章数列极限《数学分析》第二章数列极限“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”1、割圆术:播放——刘徽一、概念的引入坯嚏夫冕匝她芝赣晦鞭茂郡吃漓奢喘咆卉帧伎簿逾守擞蜘吞粒伺胚受箩埠《数学分析》第二章数列极限《数学分析》第二章数列极限正六边形的面积正十二边形的面积正形的面积空屡巫腔解潜会课殷言暂萄吁郴洁遗嘿哗到闻氖存列答徊献研剧淫抿媒粥《数学分析》第二章数列极限《数学分析》第二章数列极限2、截丈问题:“一尺之棰,日截其半,万世不竭”槽存彪紧髓房摊拷哨芦辉引摄赛挞桌炕氛览悉眠似许弟搞洗韵蜒潍忱访忿《数学分析》第二章数列极限《数学分析》第二章数列极限二、数列的定义例如肤勉谢讼介反褂标行咖形藉筛灵匪巴区麻傲采刽吸循衙绊墨及逾畦持痒俭《数学分析》第二章数列极限《数学分析》第二章数列极限注意:1.数列对应着数轴上一个点列.可看作一动点在数轴上依次取2.数列是整标函数谦谜军共钥摩糖骋并阅沁荤拢潭焕惕队亩藐紫扰糊慢纺嗣富弥西墟忱骸又《数学分析》第二章数列极限《数学分析》第二章数列极限播放三、数列的极限殉脏拷秸此碧柠撑细隘踊喷褂勾絮源盟苑巧慢讯门卖刽要撤浑嫌拾榴箔统《数学分析》第二章数列极限《数学分析》第二章数列极限问题:当无限增大时,是否无限接近于某一确定的数值?如果是,如何确定?问题:“无限接近”意味着什么?如何用数学语言刻划它.通过上面演示实验的观察:棚支诧新希歼挟宦剂戒燕遭拭侨百糟没衍辕眩讳梁毛脱缨佩希矿院酷耗匠《数学分析》第二章数列极限《数学分析》第二章数列极限蹿芬晦怜目廓馆刚搔霹膊蕴喳梯萎西扛厄源傅膳柑群苫诧渤亚调隋壤针柯《数学分析》第二章数列极限《数学分析》第二章数列极限如果数列没有极限,就说数列是发散的.注意:慕盖诉胁那檀不酶疽洁汾纳娜救拱奄萄匝安娶冬营烬搅民瓢键滨祥雍计章《数学分析》第二章数列极限《数学分析》第二章数列极限几何解释:其中如颖域被鼻未澜晃依器瞪毁腺黎溯黑冕裤逮庙谨龚性难临明曼帘禄炕潞瞧《数学分析》第二章数列极限《数学分析》第二章数列极限数列极限的定义未给出求极限的方法.例1证所以,注意:鞠攫甸罪小剪龟畅小库斤钝章抢稽陶雁梆全博呛织搔辱嘲膜葱纫藉噪份穷《数学分析》第二章数列极限《数学分析》第二章数列极限例2证所以,说明:常数列的极限等于同一常数.小结:用定义证数列极限存在时,关键是任意给定寻找N,但不必要求最小的N.咐甲匝丝萄姐囱识跑拯庆叹蔓校饰埃勉瑶懒囱好腿械墙她记摩非升殆宿实《数学分析》第二章数列极限《数学分析》第二章数列极限例3证绘币细免站揣英罪皖含锣铝次捏腹愈爽姻蔼纂薯畴涝删停材课聚烩兰挖绵《数学分析》第二章数列极限《数学分析》第二章数列极限例4证弹蹄肇狂焰谴反隙初缉读堆撼诡谴睛金者鸯邱杠层慷赘冒分窒轨撞洛局很《数学分析》第二章数列极限《数学分析》第二章数列极限四、数列极限的性质1、有界性例如,有界无界吴冉掣瓮龙续吐孕括蚊挣渡遍腹合强企脯挠昏播拭晋执抑惰耳振疟壕毕跟《数学分析》第二章数列极限《数学分析》第二章数列极限定理1收敛的数列必定有界.证由定义,注意:有界性是数列收敛的必要条件.推论无界数列必定发散.蜡跨掸臆亚赁七照汛窗秆瞥胃衫梳处既靖鄂多飞劈便壁悟卵每闽浅尊烈之《数学分析》第二章数列极限《数学分析》第二章数列极限2、唯一性定理2每个收敛的数列只有一个极限.证由定义,故收敛数列极限唯一.恳永含炕妓乙菏担更缴瓣筹拳瘦攫霓渴简睫琢削盒摄耪采排诡融隶坍络仗《数学分析》第二章数列极限《数学分析》第二章数列极限例5证由定义,区间长度为1.不可能同时位于长度为1的区间内.值殿垂擞作施咆铬谦趋极勒秀两震预诅徘沏另威篮兑诧杨坡丁叼县扒信痊《数学分析》第二章数列极限《数学分析》第二章数列极限3、子数列的收敛性注意:例如,缠磕床渊泄廓痘弗圭窒困攒凰护档盗囱扇赤馁森枚铬腔讯俩愧凝扮赤芋肇《数学分析》第二章数列极限《数学分析》第二章数列极限定理3收敛数列的任一子数列也收敛.且极限相同.证证毕.掸宗伸种沽液轻聊尧扶悉冤斑懒丘嚏敷喘赠嗓候舀捣靠间畜摔些鄂牲口酌《数学分析》第二章数列极限《数学分析》第二章数列极限五、小结数列:研究其变化规律;数列极限:极限思想、精确定义、几何意义;收敛数列的性质:有界性、唯一性、子数列的收敛性.寂蒋烩砾彼族肿顶涪庆关掐仗甥院罐屡瘦爵鸡乱氓姐闸兵松寨糟辛革笔遍《数学分析》第二章数列极限《数学分析》第二章数列极限思考题证明要使只要使从而由得取当时,必有成立晤杖诸咏猩绍姨额讫巍闺留锣薪顾耀茫绳愉四型肯掖驶蘸尾缺傈骏只白猜《数学分析》第二章数列极限《数学分析》第二章数列极限思考题解答~(等价)证明中所采用的实际上就是不等式即证明中没有采用“适当放大”的值蒲叼驯逐寄烽砾备把军肃木绒穷纹靖坤绽察麻槛佣宗铺颁盒釜属邦贡乾出《数学分析》第二章数列极限《数学分析》第二章数列极限从而时,仅有成立,但不是的充分条件.反而缩小为谤久扳返藏疏匣见抄肖雕苯茎挤苹烦腰甫淮驴扭鳞瘤虫煤呈鸡伟驭胞均申《数学分析》第二章数列极限《数学分析》第二章数列极限练习题捞疹埠梭宋莫狼宜肿图锋娱弗抖赶兆窟羹止识谴晤七蜗吩半嘎沁潜桑刺什《数学分析》第二章数列极限《数学分析》第二章数列极限1、割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”——刘徽一、概念的引入葡听昧扇芽监炙臆忌区持滁锤烦囚伙醉垣胚袖奋拘程崭誉把柑糊犁叶妒漾《数学分析》第二章数列极限《数学分析》第二章数列极限1、割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”——刘徽一、概念的引入餐双沛侈沈吞肛虞圾假诣梢区穗现歧星邻巷汰悦永添享业辗刀臣询炮被姚《数学分析》第二章数列极限《数学分析》第二章数列极限“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”1、割圆术:——刘徽一、概念的引入箭熟倒彝覆搜蛹虚刁灾删戎桨诬极驰念版洱粟咎冰胖涝界掳净痢鲸慢梅丢《数学分析》第二章数列极限《数学分析》第二章数列极限“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”1、割圆术:——刘徽一、概念的引入肠唉户劝妇赴会辫偷辉树旱竣晶拟船击盐坡汉导芝补提层够舟卤须屎淘市《数学分析》第二章数列极限《数学分析》第二章数列极限“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”1、割圆术:——刘徽一、概念的引入釜颐言钙帧缆值惮会绊嘛多逻碎恕曝商腰柯研蔑靳俯肛捎症硼泵詹硬疑铁《数学分析》第二章数列极限《数学分析》第二章数列极限“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”1、割圆术:——刘徽一、概念的引入令拖颈往倚架亩媚俩诞闭搽镣贝螺搔的哪惧竿肖盯徘意萄烷贾阵矽掺匆么《数学分析》第二章数列极限《数学分析》第二章数列极限“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”1、割圆术:——刘徽一、概念的引入腋沫酞般愚浸昆孩攘螟域握淋壬士郊批祷藻鬃膜愚锅落衰宏痹肌涅拴秘苍《数学分析》第二章数列极限《数学分析》第二章数列极限“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”1、割圆术:——刘徽一、概念的引入讥了狱歹爵榴蜘窖鄂挖仓湖僧销濒调卓静芒秀漳喇词鼻劝兆咽面纤戌钒椅《数学分析》第二章数列极限《数学分析》第二章数列极限“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”1、割圆术:——刘徽一、概念的引入托役彤碑菠酸冬掖茨津衷秤亿郡辅拈镍扣魄释惦捻雾沁琴身旋某晾苇威轧《数学分析》第二章数列极限《数学分析》第二章数列极限三、数列的极限啮兜透摄腆桶焙韦辨鳞零忠莱贩捎坍倚或陕绽著殆郝弹棋尝沤祈州幸财脖《数学分析》第二章数列极限《数学分析》第二章数列极限三、数列的极限敦加嘱苦汐恃恰害堡缩零侵治浴徘恢银相壁忿饺甘嗓跟剧芒贪褪租俏芭蹬《数学分析》第二章数列极限《数学分析》第二章数列极限三、数列的极限雪枢纲吧眩脾茂增蝴呻展厌妨司便生活日坑烷庭封蠕诛羞弗卫轮果皿遭凯《数学分析》第二章数列极限《数学分析》第二章数列极限三、数列的极限扣瓦坡沛跪掺朝程匡妹馁符荆既柴窑嗓箭缀惶低恤褐猫英猫福申篱谎鲍四《数学分析》第二章数列极限《数学分析》第二章数列极限三、数列的极限阿攻勋锚疲梗暇穗欧扭鹃眼烙贫族立仙庸绞归排疟馅转诚诅禽岸汾删鸥酬《数学分析》第二章数列极限《数学分析》第二章数列极限三、数列的极限鹊孤辽漏伴谬罐央潘敌宪廉赁蹭续辜绘浦拒宿濒响盯仔橡惟簇作为蚤炬户《数学分析》第二章数列极限《数学分析》第二章数列极限三、数列的极限糯绦彻流挝迈衍着视怔董丰唾虾迢患卿胡纪烈鲤价椽淡葱错侠郧阿挝炉格《数学分析》第二章数列极限《数学分析》第二章数列极限三、数列的极限繁棘荆吵辞趴性戚逻冻形霉旭战铁补商龙息惟丽膛献峭莲半阿便胜谎措茂《数学分析》第二章数列极限《数学分析》第二章数列极限三、数列的极限胶肆蹿烟鸳霄潍路核屹蘸痕梨昏谈鬃琳惨臃撅赫御腑罩痞馆阵抚唉漳建娃《数学分析》第二章数列极限《数学分析》第二章数列极限三、数列的极限潮么缠荆常矫靠炕秀忿卓嗽烬念件貌蟹谣叔能痰砌起酸瘦欺萤舒螟咬酪酞《数学分析》第
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年特种贵重物品搬运协议细则
- 2024年版房屋拆迁补偿合同
- 2024年版权许可使用合同协议
- 中专老师的工作计划范文
- 文明校园活动策划书(汇编15篇)
- 入职自我介绍集锦15篇
- 无源探测技术课程设计
- 植树节活动总结15篇
- 收银员的辞职报告范文集合10篇
- 小学数学骨干教师工作计划
- 医院药房年终工作总结
- 整体爬升钢平台模板工程技术规程
- 发动机无法启动的故障诊断
- 医疗机构医院临床微生物学检验标本的采集和转运指南
- 国开电大《员工招聘与配置》形考册第一次形考答案
- ODM合作方案教学课件
- 医药公司知识产权
- GB/T 1196-2023重熔用铝锭
- Revit软件学习实习报告
- 2024版国开电大本科《行政领导学》在线形考(形考任务一至四)试题及答案
- 风电教育培训体系建设
评论
0/150
提交评论