版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届福建省福州市鳌峰中考数学押题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图的立体图形,从左面看可能是()A. B.C. D.2.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.3.关于x的不等式组的所有整数解是()A.0,1 B.﹣1,0,1 C.0,1,2 D.﹣2,0,1,24.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、1.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为()A.12 B.14 C.15.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()A. B. C. D.6.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将以DE为折痕向右折叠,AE与BC交于点F,则的面积为()A.4 B.6 C.8 D.107.下列图形中为正方体的平面展开图的是()A. B.C. D.8.下列各式:①a0=1②a2·a3=a5③2–2=–④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正确的是()A.①②③ B.①③⑤ C.②③④ D.②④⑤9.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.众数D.方差10.如图是由6个完全相同的小长方体组成的立体图形,这个立体图形的左视图是()A. B.C. D.二、填空题(共7小题,每小题3分,满分21分)11.计算:|-3|-1=__.12.如图,在梯形ABCD中,AB∥CD,∠C=90°,BC=CD=4,AD=2,若,用、表示=_____.13.如图,小红作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积,然后分别取△A1B1C1三边的中点A2,B2,C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积,用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第8个正△A8B8C8的面积是_____.14.如图,Rt△ABC中,AC=3,BC=4,∠ACB=90°,P为AB上一点,且AP=2BP,若点A绕点C顺时针旋转60°,则点P随之运动的路径长是_________15.将直尺和直角三角尺按如图方式摆放.若,,则________.16.如图所示,在长为10m、宽为8m的长方形空地上,沿平行于各边的方向分割出三个全等的小长方形花圃则其中一个小长方形花圃的周长是______m.17.已知x=2是一元二次方程x2﹣2mx+4=0的一个解,则m的值为.三、解答题(共7小题,满分69分)18.(10分)一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把1,3,6,10,15,21,…,称为“三角形数”;把1,4,9,16,25,…,称为“正方形数”.将三角形、正方形、五边形都整齐的由左到右填在所示表格里:三角形数136101521a…正方形数1491625b49…五边形数151222C5170…(1)按照规律,表格中a=___,b=___,c=___.(2)观察表中规律,第n个“正方形数”是________;若第n个“三角形数”是x,则用含x、n的代数式表示第n个“五边形数”是___________.19.(5分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HF与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米).(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,,)20.(8分)已知:二次函数满足下列条件:①抛物线y=ax2+bx与直线y=x只有一个交点;②对于任意实数x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立.(1)求二次函数y=ax2+bx的解析式;(2)若当-2≤x≤r(r≠0)时,恰有t≤y≤1.5r成立,求t和r的值.21.(10分)如图1,图2…、图m是边长均大于2的三角形、四边形、…、凸n边形.分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧…、n条弧.(1)图1中3条弧的弧长的和为,图2中4条弧的弧长的和为;(2)求图m中n条弧的弧长的和(用n表示).22.(10分)已知一次函数y=x+1与抛物线y=x2+bx+c交A(m,9),B(0,1)两点,点C在抛物线上且横坐标为1.(1)写出抛物线的函数表达式;(2)判断△ABC的形状,并证明你的结论;(3)平面内是否存在点Q在直线AB、BC、AC距离相等,如果存在,请直接写出所有符合条件的Q的坐标,如果不存在,说说你的理由.23.(12分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量(升)关于加满油后已行驶的路程(千米)的函数图象.根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;求关于的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.24.(14分)如图1,已知扇形MON的半径为,∠MON=90°,点B在弧MN上移动,联结BM,作OD⊥BM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,∠COM的正切值为y.(1)如图2,当AB⊥OM时,求证:AM=AC;(2)求y关于x的函数关系式,并写出定义域;(3)当△OAC为等腰三角形时,求x的值.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】
根据三视图的性质即可解题.【详解】解:根据三视图的概念可知,该立体图形是三棱柱,左视图应为三角形,且直角应该在左下角,故选A.【点睛】本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.2、A【解析】试题分析:几何体的主视图有2列,每列小正方形数目分别为2,1.故选A.考点:三视图视频3、B【解析】
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,据此即可得出答案.【详解】解不等式﹣2x<4,得:x>﹣2,解不等式3x﹣5<1,得:x<2,则不等式组的解集为﹣2<x<2,所以不等式组的整数解为﹣1、0、1,故选:B.【点睛】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4、A【解析】
转盘中4个数,每转动一次就要4种可能,而其中是奇数的有2种可能.然后根据概率公式直接计算即可【详解】奇数有两种,共有四种情况,将转盘转动一次,求得到奇数的概率为:P(奇数)=24=1【点睛】此题主要考查了几何概率,正确应用概率公式是解题关键.5、C【解析】试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.故选C6、C【解析】
根据折叠易得BD,AB长,利用相似可得BF长,也就求得了CF的长度,△CEF的面积=CF•CE.【详解】解:由折叠的性质知,第二个图中BD=AB-AD=4,第三个图中AB=AD-BD=2,
因为BC∥DE,
所以BF:DE=AB:AD,
所以BF=2,CF=BC-BF=4,
所以△CEF的面积=CF•CE=8;
故选:C.点睛:
本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②矩形的性质,平行线的性质,三角形的面积公式等知识点.7、C【解析】
利用正方体及其表面展开图的特点依次判断解题.【详解】由四棱柱四个侧面和上下两个底面的特征可知A,B,D上底面不可能有两个,故不是正方体的展开图,选项C可以拼成一个正方体,故选C.【点睛】本题是对正方形表面展开图的考查,熟练掌握正方体的表面展开图是解题的关键.8、D【解析】
根据实数的运算法则即可一一判断求解.【详解】①有理数的0次幂,当a=0时,a0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中2–2=,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确.故选D.9、D【解析】
根据方差反映数据的波动情况即可解答.【详解】由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差.故选D.【点睛】本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.10、B【解析】
根据题意找到从左面看得到的平面图形即可.【详解】这个立体图形的左视图是,
故选:B.【点睛】本题考查了简单组合体的三视图,解题的关键是掌握左视图所看的位置.二、填空题(共7小题,每小题3分,满分21分)11、2【解析】
根据有理数的加减混合运算法则计算.【详解】解:|﹣3|﹣1=3-1=2.故答案为2.【点睛】考查的是有理数的加减运算、乘除运算,掌握它们的运算法则是解题的关键.12、【解析】
过点A作AE⊥DC,利用向量知识解题.【详解】解:过点A作AE⊥DC于E,∵AE⊥DC,BC⊥DC,∴AE∥BC,又∵AB∥CD,∴四边形AECB是矩形,∴AB=EC,AE=BC=4,∴DE===2,∴AB=EC=2=DC,∵,∴,∵,∴,∴,故答案为.【点睛】向量知识只有使用沪教版(上海)教材的学生才学过,全国绝大部分地区将向量放在高中阶段学习.13、【解析】
根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△AnBnCn的面积是,从而求出第8个正△A8B8C8的面积.【详解】正△A1B1C1的面积是,而△A2B2C2与△A1B1C1相似,并且相似比是1:2,则面积的比是,则正△A2B2C2的面积是×;因而正△A3B3C3与正△A2B2C2的面积的比也是,面积是×()2;依此类推△AnBnCn与△An-1Bn-1Cn-1的面积的比是,第n个三角形的面积是()n-1.所以第8个正△A8B8C8的面积是×()7=.故答案为.【点睛】本题考查了相似三角形的性质及应用,相似三角形面积的比等于相似比的平方,找出规律是关键.14、π【解析】
作PD⊥BC,则点P运动的路径长是以点D为圆心,以PD为半径,圆心角为60°的一段圆弧,根据相似三角形的判定与性质求出PD的长,然后根据弧长公式求解即可.【详解】作PD⊥BC,则PD∥AC,∴△PBD~△ABC,∴PDAC∵AC=3,BC=4,∴AB=32∵AP=2BP,∴BP=13∴PD=5∴点P运动的路径长=60π×1180故答案为:π3【点睛】本题考查了相似三角形的判定与性质,弧长的计算,根据相似三角形的判定与性质求出PD的长是解答本题的关键.15、80°.【解析】
由于直尺外形是矩形,根据矩形的性质可知对边平行,所以∠4=∠3,再根据外角的性质即可求出结果.【详解】解:如图所示,依题意得:∠4=∠3,∵∠4=∠2+∠1=80°∴∠3=80°.故答案为80°.【点睛】本题考查了平行线的性质和三角形外角的性质,掌握三角形外角的性质是解题的关键.16、12【解析】
由图形可看出:小矩形的2个长+一个宽=10m,小矩形的2个宽+一个长=8m,设出长和宽,列出方程组解之即可求得答案.【详解】解:设小长方形花圃的长为xm,宽为ym,由题意得,解得,所以其中一个小长方形花圃的周长是.【点睛】此题主要考查了二元一次方程组的应用,解题的关键是:数形结合,弄懂题意,找出等量关系,列出方程组.本题也可以让列出的两个方程相加,得3(x+y)=18,于是x+y=6,所以周长即为2(x+y)=12,问题得解.这种思路用了整体的数学思想,显得较为简捷.17、1.【解析】试题分析:直接把x=1代入已知方程就得到关于m的方程,再解此方程即可.试题解析:∵x=1是一元二次方程x1-1mx+4=0的一个解,∴4-4m+4=0,∴m=1.考点:一元二次方程的解.三、解答题(共7小题,满分69分)18、123n2n2+x-n【解析】分析:(1)、首先根据题意得出前6个“三角形数”分别是多少,从而得出a的值;前5个“正方形数”分别是多少,从而得出b的值;前4个“正方形数”分别是多少,从而得出c的值;(2)、根据前面得出的一般性得出答案.详解:(1)∵前6个“三角形数”分别是:1=、3=、6=、10=、15=、21=,
∴第n个“三角形数”是,∴a=7×82=17×82=1.
∵前5个“正方形数”分别是:1=12,4=22,9=32,16=42,25=52,
∴第n个“正方形数”是n2,∴b=62=2.
∵前4个“正方形数”分别是:1=,5=,12=,22=,
∴第n个“五边形数”是n(3n−1)2n(3n−1)2,∴c==3.
(2)第n个“正方形数”是n2;1+1-1=1,3+4-5=2,6+9-12=3,10+16-22=4,…,
∴第n个“五边形数”是n2+x-n.点睛:此题主要考查了图形的变化类问题,要熟练掌握,解答此类问题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.19、3.05米.【解析】
延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.【详解】延长FE交CB的延长线于M,过A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC•tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHD=60°,sin∠FAG=,∴sin60°=,∴FG=2.165,∴DM=FG+GM﹣DF≈3.05米.答:篮框D到地面的距离是3.05米.考点:解直角三角形的应用.20、(1)y=x2+x;(2)t=-4,r=-1.【解析】
(1)由①联立方程组,根据抛物线y=ax2+bx与直线y=x只有一个交点可以求出b的值,由②可得对称轴为x=1,从而得a的值,进而得出结论;(2)进行分类讨论,分别求出t和r的值.【详解】(1)y=ax2+bx和y=x联立得:ax2+(b+1)x=0,Δ=0得:(b-1)2=0,得b=1,∵对称轴为=1,∴=1,∴a=,∴y=x2+x.(2)因为y=x2+x=(x-1)2+,所以顶点(1,)当-2<r<1,且r≠0时,当x=r时,y最大=r2+r=1.5r,得r=-1,当x=-2时,y最小=-4,所以,这时t=-4,r=-1.当r≥1时,y最大=,所以1.5r=,所以r=,不合题意,舍去,综上可得,t=-4,r=-1.【点睛】本题考查二次函数综合题,解题的关键是理解题意,利用二次函数的性质解决问题.21、(1)π,2π;(2)(n﹣2)π.【解析】
(1)利用弧长公式和三角形和四边形的内角和公式代入计算;(2)利用多边形的内角和公式和弧长公式计算.【详解】(1)利用弧长公式可得=π,因为n1+n2+n3=180°.同理,四边形的==2π,因为四边形的内角和为360度;(2)n条弧==(n﹣2)π.【点睛】本题考查了多边形的内角和定理以及扇形的面积公式和弧长的计算公式,理解公式是关键.22、(1)y=x2﹣7x+1;(2)△ABC为直角三角形.理由见解析;(3)符合条件的Q的坐标为(4,1),(24,1),(0,﹣7),(0,13).【解析】
(1)先利用一次函数解析式得到A(8,9),然后利用待定系数法求抛物线解析式;(2)先利用抛物线解析式确定C(1,﹣5),作AM⊥y轴于M,CN⊥y轴于N,如图,证明△ABM和△BNC都是等腰直角三角形得到∠MBA=45°,∠NBC=45°,AB=8,BN=1,从而得到∠ABC=90°,所以△ABC为直角三角形;(3)利用勾股定理计算出AC=10,根据直角三角形内切圆半径的计算公式得到Rt△ABC的内切圆的半径=2,设△ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,则AI、BI为角平分线,BI⊥y轴,PQ为△ABC的外角平分线,易得y轴为△ABC的外角平分线,根据角平分线的性质可判断点P、I、Q、G到直线AB、BC、AC距离相等,由于BI=×2=4,则I(4,1),接着利用待定系数法求出直线AI的解析式为y=2x﹣7,直线AP的解析式为y=﹣x+13,然后分别求出P、Q、G的坐标即可.【详解】解:(1)把A(m,9)代入y=x+1得m+1=9,解得m=8,则A(8,9),把A(8,9),B(0,1)代入y=x2+bx+c得,解得,∴抛物线解析式为y=x2﹣7x+1;故答案为y=x2﹣7x+1;(2)△ABC为直角三角形.理由如下:当x=1时,y=x2﹣7x+1=31﹣42+1=﹣5,则C(1,﹣5),作AM⊥y轴于M,CN⊥y轴于N,如图,∵B(0,1),A(8,9),C(1,﹣5),∴BM=AM=8,BN=CN=1,∴△ABM和△BNC都是等腰直角三角形,∴∠MBA=45°,∠NBC=45°,AB=8,BN=1,∴∠ABC=90°,∴△ABC为直角三角形;(3)∵AB=8,BN=1,∴AC=10,∴Rt△ABC的内切圆的半径=,设△ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,∵I为△ABC的内心,∴AI、BI为角平分线,∴BI⊥y轴,而AI⊥PQ,∴PQ为△ABC的外角平分线,易得y轴为△ABC的外角平分线,∴点I、P、Q、G为△ABC的内角平分线或外角平分线的交点,它们到直线AB、BC、AC距离相等,BI=×2=4,而BI⊥y轴,∴I(4,1),设直线AI的解析式为y=kx+n,则,解得,∴直线AI的解析式为y=2x﹣7,当x=0时,y=2x﹣7=﹣7,则G(0,﹣7);设直线AP的解析式为y=﹣x+p,把A(8,9)代入得﹣4+n=9,解得n=13,∴直线AP的解析式为y=﹣x+13,当y=1时,﹣x+13=1,则P(24,1)当x=0时,y=﹣x+13=13,则Q(0,13),综上所述,符合条件的Q的坐标为(4,1),(24,1),(0,﹣7),(0,13).【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、角平分线的性质
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年智能计量终端项目规划申请报告
- 2025年有声阅读项目提案报告模板
- 2025年抗滴虫病药项目立项申请报告模板
- 2025年加气加注设备项目规划申请报告模板
- 2024-2025学年西乡塘区数学三上期末复习检测模拟试题含解析
- 2025年水质分析仪项目立项申请报告
- 2025年印刷品项目立项申请报告
- 2025年工业物联网项目提案报告
- 2025年涂料光亮剂项目立项申请报告模稿
- 2024年矿山槽探工程承包合同版B版
- 国家开放大学电大《会计信息系统》期末终考题库及标准参考答案
- 【飞科电器公司基于杜邦分析法的财务分析案例(7700字论文)】
- 多器官功能障碍综合征MODS诊疗及护理试题
- 儿童呼吸道合胞病毒感染临床诊治试题
- 2021-2022学年广东省广州市花都区六年级(上)期末英语试卷
- 2024年人教版八年级生物(上册)期末试卷及答案(各版本)
- A股上市与借壳上市详细流程图
- 2024年美国家用WiFi路由器市场现状及上下游分析报告
- 《橡皮障的应用方法》幻灯片课件
- 2019教科版《三年级科学上册》分组实验报告单
- 人教版5年级上册音乐测试(含答案)
评论
0/150
提交评论