人教版高数必修四第7讲:平面向量基本定理及坐标运算(学生版)-东直门仉长娜_第1页
人教版高数必修四第7讲:平面向量基本定理及坐标运算(学生版)-东直门仉长娜_第2页
人教版高数必修四第7讲:平面向量基本定理及坐标运算(学生版)-东直门仉长娜_第3页
人教版高数必修四第7讲:平面向量基本定理及坐标运算(学生版)-东直门仉长娜_第4页
人教版高数必修四第7讲:平面向量基本定理及坐标运算(学生版)-东直门仉长娜_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE1平面向量基本定理与坐标运算____________________________________________________________________________________________________________________________________________________________________1.掌握平面向量的正交分解及其坐标表示;2.会用坐标表示平面向量的加、减与数乘运算.3.会用坐标表示平面向量共线的条件,进而解决一些相关问题.4.了解平面向量的基本定理及其意义.一、平面向量基本定理:1.平面向量基本定理:_______________________________________________________________________________________________________________________________________________二、平面向量的坐标表示:如图,在直角坐标系内,我们分别取与轴、轴方向相同的两个__单位向量_、作为基底任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得…………eq\o\ac(○,1),我们把叫做向量的(直角)坐标,记作…………eq\o\ac(○,2)其中叫做在轴上的坐标,叫做在轴上的坐标,eq\o\ac(○,2)式叫做向量的坐标表示与相等的向量的坐标也为特别地,,,特别提醒:设,则向量的坐标就是点的坐标;反过来,点的坐标也就是向量的坐标因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示三、平面向量的坐标运算:(1)若,,则=______________,=_______________两个向量和与差的坐标分别等于这两个向量相应坐标的和与差(2)若,,则一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标(3)若和实数,则实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标(4)向量平行的充要条件的坐标表示:设=(x1,y1),=(x2,y2)其中∥()的充要条件是类型一平面向量基本定理的应用【例1】►(2012·南京质检)如图所示,在△ABC中,H为BC上异于B,C的任一点,M为AH的中点,若eq\o(AM,\s\up6(→))=λeq\o(AB,\s\up6(→))+μeq\o(AC,\s\up6(→)),则λ+μ=________.【训练1】如图,两块斜边长相等的直角三角板拼在一起.若eq\o(AD,\s\up6(→))=xeq\o(AB,\s\up6(→))+yeq\o(AC,\s\up6(→)),则x=________,y=________.[例1]在△OAB中,,AD与BC交于点M,设=,=,用,表示.练习:1.若已知、是平面上的一组基底,则下列各组向量中不能作为基底的一组是()A.与—B.3与2C.+与—D.与22.在△ABC中,已知AM︰AB=1︰3,AN︰AC=1︰4,BN与CM交于点P,且,试用表示.类型二平面向量的坐标运算【例2】►(2011·合肥模拟)已知A(-2,4),B(3,-1),C(-3,-4),且eq\o(CM,\s\up6(→))=3eq\o(CA,\s\up6(→)),eq\o(CN,\s\up6(→))=2eq\o(CB,\s\up6(→)).求M,N的坐标和eq\o(MN,\s\up6(→)).【训练2】在平行四边形ABCD中,AC为一条对角线,若eq\o(AB,\s\up6(→))=(2,4),eq\o(AC,\s\up6(→))=(1,3),则eq\o(BD,\s\up6(→))=().A.(-2,-4) B.(-3,-5)C.(3,5) D.(2,4)若A(0,1),B(1,2),C(3,4)则2=4.若M(3,-2)N(-5,-1)且,求P点的坐标;类型三平面向量共线的坐标运算【例3】►已知a=(1,2),b=(-3,2),是否存在实数k,使得ka+b与a-3b共线,且方向相反?【训练3】(2011·西安质检)已知向量a=(1,2),b=(2,-3),若向量c满足(c+a)∥b,c⊥(a+b),则c=().A.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(7,9),\f(7,3))) B.eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(7,3),-\f(7,9)))C.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(7,3),\f(7,9))) D.eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(7,9),-\f(7,3)))9.已知,当实数取何值时,+2与2—4平行?一、选择题1.设e1、e2是平面内所有向量的一组基底,则下面四组向量中,不能作为基底的是()A.e1+e2和e1-e2 B.3e1-2e2和4e2-6e1C.e1+2e2和e2+2e1 D.e2和e1+e22.下面给出了三个命题:①非零向量a与b共线,则a与b所在的直线平行;②向量a与b共线的条件是当且仅当存在实数λ1、λ2,使得λ1a=λ2b;③平面内的任一向量都可用其它两个向量的线性组合表示.其中正确命题的个数是()A.0 B.1C.2 D.33.给出下列结论:①若a≠b,则|a+b|<|a|+|b|;②非零向量a、b共线,则|a+b|>0;③对任意向量a、b,|a-b|≥0;④若非零向量a、b共线且反向,则|a-b|>|a|.其中正确的有()个.()A.1 B.2C.3 D.44.已知向量e1、e2不共线,实数x、y满足(x-y)e1+(2x+y)e2=6e1+3e2,则x-y的值等于()A.3 B.-3C.6 D.-65.设一直线上三点A,B,P满足eq\o(AP,\s\up6(→))=λeq\o(PB,\s\up6(→))(λ≠±1),O为平面内任意一点,则eq\o(OP,\s\up6(→))用eq\o(OA,\s\up6(→))、eq\o(OB,\s\up6(→))表示为()A.eq\o(OP,\s\up6(→))=eq\o(OA,\s\up6(→))+λeq\o(OB,\s\up6(→)) B.eq\o(OP,\s\up6(→))=λeq\o(OA,\s\up6(→))+(1+λ)eq\o(OB,\s\up6(→))C.eq\o(OP,\s\up6(→))=eq\f(\o(OA,\s\up6(→))+λ\o(OB,\s\up6(→)),1+λ) D.eq\o(OP,\s\up6(→))=eq\f(1,λ)eq\o(OA,\s\up6(→))+eq\f(1,1-λ)eq\o(OB,\s\up6(→))6.(2014·广东文,3)已知向量a=(1,2)、b=(3,1),则b-a=()A.(-2,1) B.(2,-1)C.(2,0) D.(4,3)7.若向量eq\o(BA,\s\up6(→))=(2,3)、eq\o(CA,\s\up6(→))=(4,7),则eq\o(BC,\s\up6(→))=()A.(-2,-4) B.(2,4)C.(6,10) D.(-6,-10)8.(2014·北京文,3)已知向量a=(2,4)、b=(-1,1),则2a-b=()A.(5,7) B.(5,9)C.(3,7) D.(3,9)9.已知eq\o(AB,\s\up6(→))=(5,-3)、C(-1,3)、eq\o(CD,\s\up6(→))=2eq\o(AB,\s\up6(→)),则点D的坐标是()A.(11,9) B.(4,0)C.(9,3) D.(9,-3)10.已知△ABC中,点A(-2,3)、点B(-3,-5),重心M(1,-2),则点C的坐标为()A.(-4,8) B.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,3),-\f(4,3)))C.(8,-4) D.(7,-2)11.已知i、j分别是方向与x轴正方向、y轴正方向相同的单位向量,O为原点,设eq\o(OA,\s\up6(→))=(x2+x+1)i-(x2-x+1)j(其中x∈R),则点A位于()A.第一、二象限 B.第二、三象限C.第三象限 D.第四象限二、填空题12.在▱ABCD中,eq\o(AB,\s\up6(→))=a,eq\o(AD,\s\up6(→))=b,eq\o(AN,\s\up6(→))=3eq\o(NC,\s\up6(→)),M为BC的中点,则eq\o(MN,\s\up6(→))=________(用a、b表示).13.已知向量a与b不共线,实数x、y满足等式3xa+(10-y)b=(4y+7)a+2xb,则x=________,y=________.14.若点O(0,0)、A(1,2)、B(-1,3),且eq\o(OA′,\s\up6(→))=2eq\o(OA,\s\up6(→)),eq\o(OB′,\s\up6(→))=3eq\o(OB,\s\up6(→)),则点A′的坐标为________.点B′的坐标为________,向量eq\o(A′B′,\s\up6(→))的坐标为________.15.在平行四边形ABCD中,AC为一条对角线,若eq\o(AB,\s\up6(→))=(2,4),eq\o(AC,\s\up6(→))=(1,3),则eq\o(BD,\s\up6(→))=________.三、解答题16.如图,已知△ABC中,M、N、P顺次是AB的四等分点,eq\o(CB,\s\up6(→))=e1,eq\o(CA,\s\up6(→))=e2,试用e1、e2表示eq\o(CM,\s\up6(→))、eq\o(CN,\s\up6(→))、eq\o(CP,\s\up6(→)).17.(1)设向量a、b的坐标分别是(-1,2)、(3,-5),求a+b,a-b,2a+3b的坐标;(2)设向量a、b、c的坐标分别为(1,-3)、(-2,4)、(0,5),求3a-b+c的坐标.__________________________________________________________________________________________________________________________________________________________________基础巩固一、选择题1.已知a=(-1,3)、b=(x,-1),且a∥b,则x等于()A.-3 B.-eq\f(1,3)C.eq\f(1,3) D.32.(2014·安徽宿州市朱仙庄煤矿中学高一月考)若A(3,-6)、B(-5,2)、C(6,y)三点共线,则y=()A.13 B.-13C.9 D.-93.向量a=(3,1)、b=(1,3)、c=(k,7),若(a-c)∥b,则k等于()A.3 B.-3C.5 D.-54.设e1、e2是两个不共线的向量,向量a=e1+λe2(λ∈R)与向量b=-(e2-2e1)共线,则()A.λ=0 B.λ=-1C.λ=-2 D.λ=-eq\f(1,2)5.已知向量a=(3,4)、b=(cosα,sinα),且a∥b,则tanα=()A.eq\f(3,4) B.eq\f(4,3)C.-eq\f(4,3) D.-eq\f(3,4)6.(2014·山东济南商河弘德中学高一月考)若向量b与向量a=(2,1)平行,且|b|=2eq\r(5),则b=()A.(4,2) B.(-4,2)C.(6,-3) D.(4,2)或(-4,-2)二、填空题7.设i、j分别为x、y轴方向的单位向量,已知eq\o(OA,\s\up6(→))=2i,eq\o(OB,\s\up6(→))=4i+2j,eq\o(AB,\s\up6(→))=-2eq\o(AC,\s\up6(→)),则点C的坐标为________.8.设向量a=(4sinα,3)、b=(2,3sinα),且a∥b,则锐角α=________.三、解答题9.设向量eq\o(OA,\s\up6(→))=(k,12)、eq\o(OB,\s\up6(→))=(4,5)、eq\o(OC,\s\up6(→))=(10,k),当k为何值时,A、B、C三点共线.能力提升一、选择题1.已知向量e1≠0,λ∈R,a=e1+λe2,b=2e1,若向量a与b共线,则()A.λ=0 B.e2=0C.e1∥e2 D.e1∥e2或λ=02.已知平面向量a=(1,2)、b=(-2,m),且a∥b,则2a+3b=()A.(-2,-4) B.(-3,-6)C.(-4,-8) D.(-5,-10)3.已知平面向量a=(x,1)、b=(-x,x2),则向量a+b()A.平行于x轴 B.平行于第一、三象限的角平分线C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论