




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年中考数学几何模型专题24圆内最大张角米勒角问题故事背景:米勒问题和米勒定理1471年,德国数学家米勒向诺德尔教授提出了如下十分有趣的问题:在地球表面的什么部位,一根垂直的悬杆呈现最长?即在什么部位,视角最大?最大视角问题是数学史上100个著名的极值问题中第一个极值问题而引人注目,因为德国数学家米勒曾提出这类问题,因此最大视角问题又称之为“米勒问题”。米勒问题:已知点A,B是∠MON的边ON上的两个定点,点C是边OM上的动点,则当C在何处时,∠ACB最大?对米勒问题在初中最值的考察过程中,也成为最大张角或最大视角问题米勒定理:已知点AB是∠MON的边ON上的两个定点,点C是边OM上的一动点,则当且仅当三角形ABC的外圆与边OM相切于点C时,∠ACB最大。证明:如图1,设C’是边OM上不同于点C的任意一点,连结A,B,因为∠AC’B是圆外角,∠ACB是圆周角,易证∠AC’B小于∠ACB,故∠ACB最大。米勒定理在解题中的应用常常以解析几何、平面几何和实际应用为背景进行考查。若能从题设中挖出隐含其中的米勒问题模型,并能直接运用米勒定理解题,这将会突破思维瓶颈、大大减少运算量、降低思维难度、缩短解题长度,从而使问题顺利解决。否则这类问题将成为考生的一道难题甚至一筹莫展,即使解出也费时化力。下面举例说明米勒定理在解决最大角问题中的应用。典型例题:1.如图,在矩形ABCD中,AB=6,AD=8,点E,F分别是边CD,BC上的动点,且∠AFE=90°(1)证明:△ABF∽△FCE;(2)当DE取何值时,∠AED最大.2.如图,是坐标原点,过点的抛物线与轴的另一个交点为,与轴交于点,其顶点为点.(1)求的值.(2)连接、,动点的坐标为.①当四边形是平行四边形时,求的值;②连接、,当最大时,求出点的坐标.3.数学概念若点在的内部,且、和中有两个角相等,则称是的“等角点”,特别地,若这三个角都相等,则称是的“强等角点”.理解概念(1)若点是的等角点,且,则的度数是.(2)已知点在的外部,且与点在的异侧,并满足,作的外接圆,连接,交圆于点.当的边满足下面的条件时,求证:是的等角点.(要求:只选择其中一道题进行证明!)①如图①,②如图②,深入思考(3)如图③,在中,、、均小于,用直尺和圆规作它的强等角点.(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法:①直角三角形的内心是它的等角点;②等腰三角形的内心和外心都是它的等角点;③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有.(填序号)4.一个角的顶点在圆外,两边都与该圆相交,则称这个角是它所夹的较大的弧所对的圆外角.(1)证明:一条弧所对的圆周角大于它所对的圆外角;(2)应用(1)的结论,解决下面的问题:某市博物馆近日展出当地出土的珍贵文物,该市小学生合唱队计划组织120名队员前去参观,队员身高的频数分布直方图如图1所示.该文物高度为,放置文物的展台高度为,如图2所示.为了让参观的队员站在最理想的观看位置,需要使其观看该文物的视角最大(视角:文物最高点P、文物最低点Q、参观者的眼睛A所形成的),则分隔参观者与展台的围栏应放在距离展台多远的地方?请说明理由.(说明:①参观者眼睛A与地面的距离近似于身高;②通常围栏的摆放位置需考虑参观者的平均身高)专题24圆内最大张角米勒角问题故事背景:米勒问题和米勒定理1471年,德国数学家米勒向诺德尔教授提出了如下十分有趣的问题:在地球表面的什么部位,一根垂直的悬杆呈现最长?即在什么部位,视角最大?最大视角问题是数学史上100个著名的极值问题中第一个极值问题而引人注目,因为德国数学家米勒曾提出这类问题,因此最大视角问题又称之为“米勒问题”。米勒问题:已知点A,B是∠MON的边ON上的两个定点,点C是边OM上的动点,则当C在何处时,∠ACB最大?对米勒问题在初中最值的考察过程中,也成为最大张角或最大视角问题米勒定理:已知点AB是∠MON的边ON上的两个定点,点C是边OM上的一动点,则当且仅当三角形ABC的外圆与边OM相切于点C时,∠ACB最大。证明:如图1,设C’是边OM上不同于点C的任意一点,连结A,B,因为∠AC’B是圆外角,∠ACB是圆周角,易证∠AC’B小于∠ACB,故∠ACB最大。米勒定理在解题中的应用常常以解析几何、平面几何和实际应用为背景进行考查。若能从题设中挖出隐含其中的米勒问题模型,并能直接运用米勒定理解题,这将会突破思维瓶颈、大大减少运算量、降低思维难度、缩短解题长度,从而使问题顺利解决。否则这类问题将成为考生的一道难题甚至一筹莫展,即使解出也费时化力。下面举例说明米勒定理在解决最大角问题中的应用。典型例题:1.如图,在矩形ABCD中,AB=6,AD=8,点E,F分别是边CD,BC上的动点,且∠AFE=90°(1)证明:△ABF∽△FCE;(2)当DE取何值时,∠AED最大.解:(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵∠AFE=90°,∴∠AFB+∠EFC=90°∵∠EFC+∠FEC=90°,∴∠AFB=∠FEC,∴△ABF∽△FCE.(2)取AE的中点O,连接OD、OF.∵∠AFE=∠ADE=90°,∴OA=OD=OE=OF,∴A、D、E、F四点共圆,∴∠AED=∠AFD,∴当⊙O与BC相切时,∠AFD的值最大,易知BF=CF=4,∵△ABF∽△FCE,2.如图,是坐标原点,过点的抛物线与轴的另一个交点为,与轴交于点,其顶点为点.(1)求的值.(2)连接、,动点的坐标为.①当四边形是平行四边形时,求的值;②连接、,当最大时,求出点的坐标.解:(1)把代入,可得,解得;(2)①设抛物线的对称轴与轴交于点.,,则,,令得,;令得,.解得或.,,,如图1,过作的平行线与直线相交,则交点必为,设直线与轴交于点,则.,.又,,在和△中,,,;②如图2,记的外心为,则在的垂直平分线上(设与轴交于点.连接、,则,,,的值随着的增大而减小.又,当取最小值时最大,即垂直直线时,最大,此时,与直线相切.,,坐标为.根据对称性,另一点也符合题意.综上可知,点坐标为或.3.数学概念若点在的内部,且、和中有两个角相等,则称是的“等角点”,特别地,若这三个角都相等,则称是的“强等角点”.理解概念(1)若点是的等角点,且,则的度数是.(2)已知点在的外部,且与点在的异侧,并满足,作的外接圆,连接,交圆于点.当的边满足下面的条件时,求证:是的等角点.(要求:只选择其中一道题进行证明!)①如图①,②如图②,深入思考(3)如图③,在中,、、均小于,用直尺和圆规作它的强等角点.(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法:①直角三角形的内心是它的等角点;②等腰三角形的内心和外心都是它的等角点;③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有.(填序号)解:(1)(i)若=时,∴==100°(ii)若时,∴(360°-)=130°;(iii)若=时,360°--=160°,综上所述:=100°、130°或160°故答案为:100、130或160.(2)选择①:连接∵∴∴∵,∴∴是的等角点.选择②连接∵∴∴∵四边形是圆的内接四边形,∴∵∴∴是的等角点(3)作BC的中垂线MN,以C为圆心,BC的长为半径作弧交MN与点D,连接BD,根据垂直平分线的性质和作图方法可得:BD=CD=BC∴△BCD为等边三角形∴∠BDC=∠BCD=∠DBC=60°作CD的垂直平分线交MN于点O以O为圆心OB为半径作圆,交AD于点Q,圆O即为△BCD的外接圆∴∠BQC=180°-∠BDC=120°∵BD=CD∴∠BQD=∠CQD∴∠BQA=∠CQA=(360°-∠BQC)=120°∴∠BQA=∠CQA=∠BQC如图③,点即为所求.(4)③⑤.①如下图所示,在RtABC中,∠ABC=90°,O为△ABC的内心假设∠BAC=60°,∠ACB=30°∵点O是△ABC的内心∴∠BAO=∠CAO=∠BAC=30°,∠ABO=∠CBO=∠ABC=45°,∠ACO=∠BCO=∠ACB=15°∴∠AOC=180°-∠CAO-∠ACO=135°,∠AOB=180°-∠BAO-∠ABO=105°,∠BOC=180°-∠CBO-∠BCO=120°显然∠AOC≠∠AOB≠∠BOC,故①错误;②对于钝角等腰三角形,它的外心在三角形的外部,不符合等角点的定义,故②错误;③正三角形的每个中心角都为:360°÷3=120°,满足强等角点的定义,所以正三角形的中心是它的强等角点,故③正确;④由(3)可知,点Q为△ABC的强等角,但Q不在BC的中垂线上,故QB≠QC,故④错误;⑤由(3)可知,当的三个内角都小于时,必存在强等角点.如图④,在三个内角都小于的内任取一点,连接、、,将绕点逆时针旋转到,连接,∵由旋转得,,∴是等边三角形.∴∴∵、是定点,∴当、、、四点共线时,最小,即最小.而当为的强等角点时,,此时便能保证、、、四点共线,进而使最小.故答案为:③⑤.4.一个角的顶点在圆外,两边都与该圆相交,则称这个角是它所夹的较大的弧所对的圆外角.(1)证明:一条弧所对的圆周角大于它所对的圆外角;(2)应用(1)的结论,解决下面的问题:某市博物馆近日展出当地出土的珍贵文物,该市小学生合唱队计划组织120名队员前去参观,队员身高的频数分布直方图如图1所示.该文物高度为,放置文物的展台高度为,如图2所示.为了让参观的队员站在最理想的观看位置,需要使其观看该文物的视角最大(视角:文物最高点P、文物最低点Q、参观者的眼睛A所形成的),则分隔参观者与展台的围栏应放在距离展台多远的地方?请说明理由.(说明:①参观者眼睛A与地面的距离近似于身高;②通常围栏的摆放位置需考虑参观者的平均身高)解:(1)已知:如图所示,点A,B,C在⊙O上,点P在⊙O外.求证:.证明:设交⊙O于点Q,连接,∵与同对,∴.∵在中,,∴,∴;(2)解:设合唱队员平均身
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年公司厂级安全培训考试试题附参考答案(巩固)
- 2024-2025工厂员工安全培训考试试题含答案(能力提升)
- 25年公司、项目部、各个班组安全培训考试试题附答案(满分必刷)
- 2025店铺雇佣合同模板
- 框架协议委托代理
- 民宿拍摄合同范本
- 2025综合承包建设合同
- 2025租房转让合同范本协议书
- 2025年钢材:一级钢项目建议书
- 2025店铺买卖合同样本
- 开曼群岛公司法2024版中文译本(含2024年修订主要内容)
- 第一章-地震工程学概论
- 2023年云南师范大学实验中学招聘考试真题
- 校友管理系统答辩
- 医院耗材管理制度耗材
- TSGD7002-2023-压力管道元件型式试验规则
- 220kV变电站技术培训方案
- 2025年软件资格考试信息系统运行管理员(初级)(基础知识、应用技术)合卷试卷及答案指导
- 购房购房合同
- 《天润乳业公司的存货管理问题及完善对策8500字》
- 神经重症气管切开患者气道功能康复与管理专家共识(2024)解读
评论
0/150
提交评论