版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省南通市如皋中学高三第四次模拟考试数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知的展开式中第项与第项的二项式系数相等,则奇数项的二项式系数和为().A. B. C. D.2.2020年是脱贫攻坚决战决胜之年,某市为早日实现目标,现将甲、乙、丙、丁4名干部派遺到、、三个贫困县扶贫,要求每个贫困县至少分到一人,则甲被派遣到县的分法有()A.6种 B.12种 C.24种 D.36种3.已知x,y满足不等式,且目标函数z=9x+6y最大值的变化范围[20,22],则t的取值范围()A.[2,4] B.[4,6] C.[5,8] D.[6,7]4.中,点在边上,平分,若,,,,则()A. B. C. D.5.为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示.劳伦茨曲线为直线时,表示收入完全平等.劳伦茨曲线为折线时,表示收入完全不平等.记区域为不平等区域,表示其面积,为的面积,将称为基尼系数.对于下列说法:①越小,则国民分配越公平;②设劳伦茨曲线对应的函数为,则对,均有;③若某国家某年的劳伦茨曲线近似为,则;④若某国家某年的劳伦茨曲线近似为,则.其中正确的是:A.①④ B.②③ C.①③④ D.①②④6.为了加强“精准扶贫”,实现伟大复兴的“中国梦”,某大学派遣甲、乙、丙、丁、戊五位同学参加三个贫困县的调研工作,每个县至少去1人,且甲、乙两人约定去同一个贫困县,则不同的派遣方案共有()A.24 B.36 C.48 D.647.若,则的虚部是()A. B. C. D.8.已知函数的图象的一条对称轴为,将函数的图象向右平行移动个单位长度后得到函数图象,则函数的解析式为()A. B.C. D.9.已知,,,若,则()A. B. C. D.10.设a,b∈(0,1)∪(1,+∞),则"a=b"是"logA.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件11.若不等式对恒成立,则实数的取值范围是()A. B. C. D.12.已知抛物线和点,直线与抛物线交于不同两点,,直线与抛物线交于另一点.给出以下判断:①以为直径的圆与抛物线准线相离;②直线与直线的斜率乘积为;③设过点,,的圆的圆心坐标为,半径为,则.其中,所有正确判断的序号是()A.①② B.①③ C.②③ D.①②③二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的右准线与渐近线的交点在抛物线上,则实数的值为___________.14.已知二面角α﹣l﹣β为60°,在其内部取点A,在半平面α,β内分别取点B,C.若点A到棱l的距离为1,则△ABC的周长的最小值为_____.15.如图,在梯形中,∥,分别是的中点,若,则的值为___________.16.的展开式中所有项的系数和为______,常数项为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数的图象在处的切线方程是.(1)求的值;(2)若函数,讨论的单调性与极值;(3)证明:.18.(12分)某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆及其内接等腰三角形绕底边上的高所在直线旋转180°而成,如图2.已知圆的半径为,设,圆锥的侧面积为.(1)求关于的函数关系式;(2)为了达到最佳观赏效果,要求圆锥的侧面积最大.求取得最大值时腰的长度.19.(12分)已知函数,当时,有极大值3;(1)求,的值;(2)求函数的极小值及单调区间.20.(12分)如图,三棱柱中,侧面为菱形,.(1)求证:平面;(2)若,求二面角的余弦值.21.(12分)已知函数,其中,.(1)当时,求的值;(2)当的最小正周期为时,求在上的值域.22.(10分)已知函数.(1)讨论的单调性;(2)若在定义域内是增函数,且存在不相等的正实数,使得,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】因为的展开式中第4项与第8项的二项式系数相等,所以,解得,所以二项式中奇数项的二项式系数和为.考点:二项式系数,二项式系数和.2、B【解析】
分成甲单独到县和甲与另一人一同到县两种情况进行分类讨论,由此求得甲被派遣到县的分法数.【详解】如果甲单独到县,则方法数有种.如果甲与另一人一同到县,则方法数有种.故总的方法数有种.故选:B【点睛】本小题主要考查简答排列组合的计算,属于基础题.3、B【解析】
作出可行域,对t进行分类讨论分析目标函数的最大值,即可求解.【详解】画出不等式组所表示的可行域如图△AOB当t≤2时,可行域即为如图中的△OAM,此时目标函数z=9x+6y在A(2,0)取得最大值Z=18不符合题意t>2时可知目标函数Z=9x+6y在的交点()处取得最大值,此时Z=t+16由题意可得,20≤t+16≤22解可得4≤t≤6故选:B.【点睛】此题考查线性规划,根据可行域结合目标函数的最大值的取值范围求参数的取值范围,涉及分类讨论思想,关键在于熟练掌握截距型目标函数的最大值最优解的处理办法.4、B【解析】
由平分,根据三角形内角平分线定理可得,再根据平面向量的加减法运算即得答案.【详解】平分,根据三角形内角平分线定理可得,又,,,,..故选:.【点睛】本题主要考查平面向量的线性运算,属于基础题.5、A【解析】
对于①,根据基尼系数公式,可得基尼系数越小,不平等区域的面积越小,国民分配越公平,所以①正确.对于②,根据劳伦茨曲线为一条凹向横轴的曲线,由图得,均有,可得,所以②错误.对于③,因为,所以,所以③错误.对于④,因为,所以,所以④正确.故选A.6、B【解析】
根据题意,有两种分配方案,一是,二是,然后各自全排列,再求和.【详解】当按照进行分配时,则有种不同的方案;当按照进行分配,则有种不同的方案.故共有36种不同的派遣方案,故选:B.【点睛】本题考查排列组合、数学文化,还考查数学建模能力以及分类讨论思想,属于中档题.7、D【解析】
通过复数的乘除运算法则化简求解复数为:的形式,即可得到复数的虚部.【详解】由题可知,所以的虚部是1.故选:D.【点睛】本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题.8、C【解析】
根据辅助角公式化简三角函数式,结合为函数的一条对称轴可求得,代入辅助角公式得的解析式.根据三角函数图像平移变换,即可求得函数的解析式.【详解】函数,由辅助角公式化简可得,因为为函数图象的一条对称轴,代入可得,即,化简可解得,即,所以将函数的图象向右平行移动个单位长度可得,则,故选:C.【点睛】本题考查了辅助角化简三角函数式的应用,三角函数对称轴的应用,三角函数图像平移变换的应用,属于中档题.9、B【解析】
由平行求出参数,再由数量积的坐标运算计算.【详解】由,得,则,,,所以.故选:B.【点睛】本题考查向量平行的坐标表示,考查数量积的坐标运算,掌握向量数量积的坐标运算是解题关键.10、A【解析】
根据题意得到充分性,验证a=2,b=1【详解】a,b∈0,1∪1,+∞,当"a=b当logab=log故选:A.【点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.11、B【解析】
转化为,构造函数,利用导数研究单调性,求函数最值,即得解.【详解】由,可知.设,则,所以函数在上单调递增,所以.所以.故的取值范围是.故选:B【点睛】本题考查了导数在恒成立问题中的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.12、D【解析】
对于①,利用抛物线的定义,利用可判断;对于②,设直线的方程为,与抛物线联立,用坐标表示直线与直线的斜率乘积,即可判断;对于③,将代入抛物线的方程可得,,从而,,利用韦达定理可得,再由,可用m表示,线段的中垂线与轴的交点(即圆心)横坐标为,可得a,即可判断.【详解】如图,设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点.设,到准线的距离分别为,,的半径为,点到准线的距离为,显然,,三点不共线,则.所以①正确.由题意可设直线的方程为,代入抛物线的方程,有.设点,的坐标分别为,,则,.所以.则直线与直线的斜率乘积为.所以②正确.将代入抛物线的方程可得,,从而,.根据抛物线的对称性可知,,两点关于轴对称,所以过点,,的圆的圆心在轴上.由上,有,,则.所以,线段的中垂线与轴的交点(即圆心)横坐标为,所以.于是,,代入,,得,所以.所以③正确.故选:D【点睛】本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
求出双曲线的渐近线方程,右准线方程,得到交点坐标代入抛物线方程求解即可.【详解】解:双曲线的右准线,渐近线,双曲线的右准线与渐近线的交点,交点在抛物线上,可得:,解得.故答案为.【点睛】本题考查双曲线的简单性质以及抛物线的简单性质的应用,是基本知识的考查,属于基础题.14、【解析】
作A关于平面α和β的对称点M,N,交α和β与D,E,连接MN,AM,AN,DE,根据对称性三角形ADC的周长为AB+AC+BC=MB+BC+CN,当四点共线时长度最短,结合对称性和余弦定理求解.【详解】作A关于平面α和β的对称点M,N,交α和β与D,E,连接MN,AM,AN,DE,根据对称性三角形ABC的周长为AB+AC+BC=MB+BC+CN,当M,B,C,N共线时,周长最小为MN设平面ADE交l于,O,连接OD,OE,显然OD⊥l,OE⊥l,∠DOE=60°,∠MOA+∠AON=240°,OA=1,∠MON=120°,且OM=ON=OA=1,根据余弦定理,故MN2=1+1﹣2×1×1×cos120°=3,故MN.故答案为:.【点睛】此题考查求空间三角形边长的最值,关键在于根据几何性质找出对称关系,结合解三角形知识求解.15、【解析】
建系,设设,由可得,进一步得到的坐标,再利用数量积的坐标运算即可得到答案.【详解】以A为坐标原点,AD为x轴建立如图所示的直角坐标系,设,则,所以,,由,得,即,又,所以,故,,所以.故答案为:2【点睛】本题考查利用坐标法求向量的数量积,考查学生的运算求解能力,是一道中档题.16、3-260【解析】
(1)令求得所有项的系数和;(2)先求出展开式中的常数项与含的系数,再求展开式中的常数项.【详解】将代入,得所有项的系数和为3.因为的展开式中含的项为,的展开式中含常数项,所以的展开式中的常数项为.故答案为:3;-260【点睛】本题考查利用二项展开式的通项公式解决二项展开式的特殊项问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)单调递减区间为,单调递增区间为,的极小值为,无极大值;(3)见解析.【解析】
(1)切点既在切线上又在曲线上得一方程,再根据斜率等于该点的导数再列一方程,解方程组即可;(2)先对求导数,根据导数判断和求解即可.(3)把证明转化为证明,然后证明极小值大于极大值即可.【详解】解:(1)函数的定义域为由已知得,则,解得.(2)由题意得,则.当时,,所以单调递减,当时,,所以单调递增,所以,单调递减区间为,单调递增区间为,的极小值为,无极大值.(3)要证成立,只需证成立.令,则,当时,单调递增,当时,单调递减,所以的极大值为,即由(2)知,时,,且的最小值点与的最大值点不同,所以,即.所以,.【点睛】知识方面,考查建立方程组求未知数,利用导数求函数的单调区间和极值以及不等式的证明;能力方面,考查推理论证能力、分析问题和解决问题的能力以及运算求解能力;试题难度大.18、(1),(2)侧面积取得最大值时,等腰三角形的腰的长度为【解析】试题分析:(1)由条件,,,所以S,;(2)令,所以得,通过求导分析,得在时取得极大值,也是最大值.试题解析:(1)设交于点,过作,垂足为,在中,,,在中,,所以S,(2)要使侧面积最大,由(1)得:令,所以得,由得:当时,,当时,所以在区间上单调递增,在区间上单调递减,所以在时取得极大值,也是最大值;所以当时,侧面积取得最大值,此时等腰三角形的腰长答:侧面积取得最大值时,等腰三角形的腰的长度为.19、(1);(2)极小值为,递减区间为:,递增区间为.【解析】
(1)由题意得到关于实数的方程组,求解方程组,即可求得的值;(2)结合(1)中的值得出函数的解析式,即可利用导数求得函数的单调区间和极小值.【详解】(1)由题意,函数,则,由当时,有极大值,则,解得.(2)由(1)可得函数的解析式为,则,令,即,解得,令,即,解得或,所以函数的单调减区间为,递增区间为,当时,函数取得极小值,极小值为.当时,有极大值3.【点睛】本题主要考查了函数的极值的概念,以及利用导数求解函数的单调区间和极值,其中解答中熟记函数的极值的概念,以及函数的导数与原函数的关系,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.20、(1)见解析(2)【解析】
(1)根据菱形性质可知,结合可得,进而可证明,即,即可由线面垂直的判定定理证明平面;(2)结合(1)可证明两两互相垂直.即以为坐标原点,的方向为轴正方向,为单位长度,建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,即可求得二面角的余弦值.【详解】(1)证明:设,连接,如下图所示:∵侧面为菱形,∴,且为及的中点,又,则为直角三角形,,又,,即,而为平面内的两条相交直线,平面.(2)平面,平面,,即,从而两两互相垂直.以为坐标原点,的方向为轴正方向,为单位长度,建立如图的空间直角坐标系,为等边三角形,,,,设平面的法向量为,则,即,∴可取,设平面的法向量为,则.同理可取,由图示可知二面角为锐二面角,∴二面角的余弦值为.【点睛】本题考查了线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程吊机租赁合同书
- 专业技术咨询协议样本
- 生产线租赁合同
- 2024超市承包经营合同范本
- 怎样确保净身出户离婚协议书的有效性
- 2024盆景植物出租合同
- 2024土地厂房转让合同范本
- 食堂承包经营合同书格式
- 2024二手房买卖合同版深圳市二手房买卖合同
- 个人信用贷款还款
- 2024年公安智能外呼项目合同
- 河南省信阳市2024-2025学年七年级上学期期中历史试题(含答案)
- 中国航空协会:2024低空经济场景白皮书
- 2025年公务员考试时政专项测验100题及答案
- 部编版二年级上册-课文一-快乐读书吧:读读童话故事-孤独的小螃蟹(课件)(共26张课件)
- 人教版(2024)七年级地理上册3.2《世界的地形》精美课件
- 中国保险行业协会官方-2023年度商业健康保险经营数据分析报告-2024年3月
- GB/T 31326-2014植物饮料
- 翻板滤池设计计算
- 红楼梦1——40回考点梳理
- 混凝土企业危险源辨识和风险控制措施表
评论
0/150
提交评论