




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
有限元法——FEM(FiniteElementMethod有限单元法)一种将连续体离散化为若干个有限大小的单元体的集合,以求解连续体力学问题的数值方法。有限元分析——FEA(FiniteElementAnalysis)
使用有限元法,以计算机为工具,对实际物理问题进行模拟求解。第2页,共42页,2024年2月25日,星期天有限元法的发展概况1943年Courant从应用数学角度,尝试用定义在三角形区域上的分片连续函数和最小位能原理相结合求解St.Venant扭转问题。
1956年Turner、Clough等将刚架位移法推广到弹性力学平面问题,用三角形单元求得平面应力问题的正确解答。
1960年Clough进一步处理了弹性力学问题,并第一次提出了“有限单元法”(FiniteElementMethod)的名称,使人们开始认识到了有限单元法的功效。
1963-1964年Besseling、Melosh等人证明了有限元法是基于变分原理的
Ritz法的另一种形式,从而确认有限元法是处理连续介质问题的一种普遍方法,并为有限元法找到了理论基础。
60年代后期开始进一步利用加权余量法来确定单元特性和建立有限元方程。
70年代以来,随着计算机技术的发展,有限元法的理论和应用研究也随之空前活跃起来。第3页,共42页,2024年2月25日,星期天有限元法的理论基础:
基础力学对象:质点特征:无变形无形状的点变量:(1)质心描述
(2)运动状态描述
(3)力的平衡描述方程:质点的牛顿三大定律非变形体(刚体)
理论力学对象:质点系及刚体特征:无变形复杂形状的体变量:(1)刚体描述
(2)运动状态描述
(3)力的平衡描述方程:质点和刚体的牛顿三大定律第4页,共42页,2024年2月25日,星期天
材料力学对象:简单变形体特征:变形(小)
简单形状的体变量:(1)材料物性描述
(2)变形方面描述
(3)力的平衡描述方程:(1)物理本构方程
(2)几何变形方程
(3)力的平衡方程三大变量→三大方程
结构力学对象:数量众多的简单变形体特征:变形(小)
简单形状的体(数量众多)变量:(1)材料物性描述
(2)变形方面描述
(3)力的平衡描述方程:(1)物理本构方程
(2)几何变形方程
(3)力的平衡方程三大变量→三大方程变形体第5页,共42页,2024年2月25日,星期天
弹性力学对象:任意变形体特征:变形(小)
任意形状的体变量:(1)材料物性描述
(2)变形方面描述
(3)力的平衡描述方程:(针对微体dxdydz)
(1)物理本构方程
(2)几何变形方程
(3)力的平衡方程三大变量→三大方程
弹塑性力学对象:任意变形体特征:变形(屈服,非线性)
任意形状的体变量:(1)材料物性描述
(2)变形方面描述
(3)力的平衡描述方程:(针对微体dxdydz)
(1)物理本构方程(屈服,非线性)(2)几何变形方程
(3)力的平衡方程三大变量→三大方程变形体第6页,共42页,2024年2月25日,星期天基本变量的定义:主位移物体变形后的形状应变物体的变形程度应力物体的受力状态弹性常数物体的材料特征第7页,共42页,2024年2月25日,星期天基本方程力的平衡方程:
力→应力几何变形方程:位移→应变材料的物理方程(本构关系):应力→应变
力平衡方程几何变形方程本构关系第8页,共42页,2024年2月25日,星期天
有限元法的思路
对象的离散化过程自然离散逼近离散(如:桁架)(连续体)离散体连续体连续体一分一合第9页,共42页,2024年2月25日,星期天离散化过程实体模型有限元模型自然离散逼近离散第10页,共42页,2024年2月25日,星期天有限元分析过程分解过程组装与求解过程第11页,共42页,2024年2月25日,星期天节点:空间中的坐标位置,具有一定自由度和
存在相互物理作用。单元:
一组节点自由度间相互作用的数值、矩阵描述(称为刚度或系数矩阵)。有限元模型由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。载荷约束节点和单元第12页,共42页,2024年2月25日,星期天....常用单元的形状线(弹簧,梁,杆)体(三维实体)线性二次..................面(薄壳,二维实体,轴对称实体)线性二次............二次线性.............线性二次第13页,共42页,2024年2月25日,星期天节点和单元块单元四面体单元第14页,共42页,2024年2月25日,星期天一般问题的求解过程结构离散化单元分析整体分析求解计算集成组合为了进行单元分析为了对整体结构综合分析第15页,共42页,2024年2月25日,星期天单元分析
单元分析是为了利用节点位移求解出节点力节点位移单元内部各点位移单元应变单元应力节点力单元分析单元刚度矩阵插值几何方程本构关系等效第16页,共42页,2024年2月25日,星期天整体特征分析
整体分析是将各个单元再拼凑起来以代替原来的连续体建立整体刚度矩阵引入约束条件节点载荷移置整体刚度矩阵第17页,共42页,2024年2月25日,星期天有限元法的工程应用
(1)平衡问题或不依赖于时间的问题
(2)固体力学和流体力学的特征值问题
(3)连续介质领域的许多随时间变化的问题和或传播问题静力动力分析疲劳分析流体动力分析模态分析热分析第18页,共42页,2024年2月25日,星期天有限元分析实例动力分析疲劳分析热分析流体分析模态分析第19页,共42页,2024年2月25日,星期天利用有限元软件求解的一般过程:
模型的建立设定材料属性添加边界条件划分网格约束、载荷运行求解后处理结果的提取应力、应变、位移等等E、G、μ等等第20页,共42页,2024年2月25日,星期天边界条件的添加
边界条件——当研究一个物体,与该物体相连接的其他物体被拿掉时,用一个约束或者载荷来替代被拿掉的物体。这个约束或者载荷就是边界条件。固定铰链固定铰链载荷(油缸压力)添加边界条件位移边界条件力边界条件第21页,共42页,2024年2月25日,星期天网格的划分第22页,共42页,2024年2月25日,星期天网格的划分粗网格细网格第23页,共42页,2024年2月25日,星期天后处理截面剪裁ISO剪裁延性:Mises脆性:应力强度第24页,共42页,2024年2月25日,星期天ISO剪裁≥25MPa≥40MPa≥60MPa≥80MPa第25页,共42页,2024年2月25日,星期天后处理探测第26页,共42页,2024年2月25日,星期天后处理探测结果第27页,共42页,2024年2月25日,星期天应力奇异(应力集中)
有限元模型中由于几何构造或载荷引起弹性理论计算应力值无限大。即使是奇异点,材料的非线性特性不可能允许应力值出现无限增大情况,在理论上总体应变也是有限的。第28页,共42页,2024年2月25日,星期天
一般应力奇异发生情形:集中载荷作用位置处锐利(零半径倒角)拐角处。
不常见的应力奇异情形:由于在划分单元网格时出错,模型中存在的“裂缝”;曲边单元中处在极不理想位置的中间点;严重扭曲的单元。在应力奇异处:单元网格越是细化,越引起计算应力无限增加,并且不再收敛。网格疏密不均匀时网格离散误差也大小不一。应力奇异处应力值不是实际应力值,不作为应力参考值。第29页,共42页,2024年2月25日,星期天·应力奇异点(应力集中点)第30页,共42页,2024年2月25日,星期天改善应力集中
消除尖角手工计算第31页,共42页,2024年2月25日,星期天装配体零件
不同的分析方式第32页,共42页,2024年2月25日,星期天装配体的分析过程(实例)装配配合分割线第33页,共42页,2024年2月25日,星期天添加材料属性编辑材料属性第34页,共42页,2024年2月25日,星期天添加边界条件第35页,共42页,2024年2月25日,星期天零件A零件B零件B零件A零件A零件B接合接触自由接触(允许贯穿)无穿透接触如:焊接件独立的零件一般装配体零部件(面)接触类型冷缩配合虚拟壁第36页,共42页,2024年2月25日,星期天划
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 危险品管理对噪声振动和辐射的管理和控制要求考核试卷
- 服装设计人体工学原理考核试卷
- 批发业采购谈判技巧与策略考核试卷
- 机床功能部件在虚拟现实设备中的交互式设计考核试卷
- 有机肥料在土壤侵蚀控制与生态恢复中的应用考核试卷
- 儿童情商培训课件
- 代加工合同范本简单
- 灯具采购标准合同范本
- 简易的物业合同范本
- 助学赠与合同范本
- 流体力学第二版蔡增基课件
- 英语书写模板
- 湖北省机关事业单位劳动合同制工人
- 天然气管道保护盖板涵施工方案
- 烧结普通砖抗压强度试验
- 云南省普通初中学生成长记录.doc
- JJG 162-2019饮用冷水水表 检定规程(高清版)
- 炼糖清净工艺关键控制点分析
- 门窗承受荷载计算方法和公式(门窗工程专业资料)
- 恒生指数收盘价历史数据(1986--2021)
- 卫生洁具购销合同
评论
0/150
提交评论