




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元二次方程复习课(二)内容:一、一元二次方程根的判别式二、一元二次方程根与系数的关系三、二次三项式的因式分解一元二次方程根的判别式
两不相等实根两相等实根无实根一元二次方程一元二次方程根的判式是:判别式的情况根的情况定理与逆定理两个不相等实根
两个相等实根
无实根(无解)一、例1:不解方程,判别下列方程的根的情况(1)(3)(2)解:(1)=
判别式的应用:所以,原方程有两个不相等的实根。说明:解这类题目时,一般要先把方程化为一般形式,求出△,然后对△进行计算,使△的符号明朗化,进而说明△的符号情况,得出结论。例1、不解方程,判别方程的根的情况
例2、已知m为非负整数,且关于x的方程:有两个实数根,求m的值。
解:∵方程有两个实数根∴解得:∵m为非负数∴m=0或m=1说明:当二次项系数也含有待定的字母时,要注意二次项系数不能为0,还要注意题目中待定字母的取值范围.例3、求证:关于x的方程:有两个不相等的实根。证明:所以,无论m取任何实数,方程有两个不相等的实数根。无论m取任何实数都有:即:△>0说明:此类题目要先把方程化成一般形式,再计算出△,如果不能直接判断△情况,就利用配方法把△配成含用完全平方的形式,根据完全平方的非负性,判断△的情况,从而证明出方程根的情况练习:1、不解方程,判别下列方程的根的情况(1)(3)(2)2、已知关于x的方程:有两个不相等的实数根,k为实数,求k的取值范围。3、设关于x的方程:,证明,不论m为何值时,方程总有两个不相等的实数根。二、一元二次方程根与系数的关系以两个数x1、x2为根的一元二次方程(二次项系数为1)是
设x1、x2是下列一元二次方程的两个根,填写下表
x1·
x2
x1+x2一元二次方程56解:设方程的另一个根为x1,那么例2、利用根与系数的关系,求一元二次方程
两个根的;(1)平方和;(2)倒数和解:设方程的两个根是x1x2,那么例3
已知方程x2-5x-2=0,作一个新方程,使它的根分别是已知方程各根平方的倒数解:设x1、x2为方程x2-5x-2=0的两根,则x1+x2=5x1x2=-2设所求方程两根为y1、y2则:例4.已知方程x2+2(m-2)x+m2+4=0有两个实数根,且这两个根的平方和比两根的积大21,求m的值.解:设x1、x2为方程的两根∵方程有两个实数根,解得m≤0.依题意,得
∵m≤0,
∴m=-1.(x12+x22)-x1x2=21例5.试确定m的值,使关于x的方程8x2-(2m2+m-6)x+2m-1=0的两根互为相反数.解:设此方程的两个根为x1、x2,要使方程的两个根互为相反数,必需满足条件:Δx1+x2=0,x1x2≤0.0,得2m2+m-6=0∴当m=-2时,原方程的两根互为相反数.1、下列方程中,两根的和与两根的积各是多少?2、已知方程的一个根是1,求它的另一个根和m的值。3、设x1、x2是方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《第二单元 可爱的家 音乐实践》(教学设计)-2023-2024学年人教版(2012)音乐三年级下册
- 2024年三年级品社下册《马路不是游戏场》教学设计 山东版
- Revision of Module 1 and Module 9(教学设计)-2023-2024学年外研版(一起)英语六年级上册
- 2024-2025学年高中历史下学期第12-13周教学设计(2.5.1 走向整体的世界)
- Unit2 Food and Health+ Speaking Workshop 教案2024-2025学年北师大版七年级英语下册
- 2023七年级道德与法治下册 第三单元 在集体中成长第六课 我和我们第2框 集体生活成就我教学设计 新人教版
- Unit 5 The colourful world Part A Let's talk(教学设计)-2024-2025学年人教PEP版(2024)英语三年级上册
- 7《汤姆·索亚历险记》(节选)教学设计-2024-2025学年统编版语文六年级下册
- 1~5的认识(教学设计)2024-2025学年一年级上册数学人教版
- 神经外科介入护理
- 2024年中国旅游集团招聘笔试参考题库含答案解析
- 2022年火力发电厂焊接技术规程-电力焊接规程
- (完整word版)劳动合同书(电子版)
- 安化十二中学生违纪处分登记表
- 07J501-1钢雨篷玻璃面板图集
- 明线改暗线施工方案范本
- 普通诊所污水、污物、粪便处理方案及周边环境情况说明
- 人教版高中数学必修一全册复习人教版课件
- 《劝学》学业水平考试复习(学生版)
- 微观市场潜力分析课件
- 新课标下如何上好音乐课
评论
0/150
提交评论