版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024七年级数学专题01有理数章末重难点题型(举一反三)【考点1科学记数法及近似数】【方法点拨】(1)科学记数法的表示形式为a×10n的形式,解决此类问题只需确定a与n的值,其中1≤|a|<10,n为整数位数减1,如若数带单位可先将其还原;(2)一般地,一个近似数四舍五入到哪一位,就说这个数近似到哪一位,也叫做精确到哪一位,但有一个易错点需注意,如2.019×105很多同学错误的认为这个数是精确到千分位,解决此类问题需将这个数还原成整数201900,这时能确定这个9应在百位上,因此这个数精确到百位.【例1】(2018•浉河区校级期中)2018年河南省全年生产总值48055.86亿元,数据“48055.86亿”用科学记数法表示为()A.4.805586×104 B.0.4805586×105 C.4.805586×1012 D.4.805586×1013【变式1-1】(2018秋•沭阳县期末)某种鲸鱼的体重约为1.36×105kg,关于这个近似数,下列说法正确的是()A.它精确到百位 B.它精确到0.01 C.它精确到千分位 D.它精确到千位【变式1-2】(2018•凉州区校级期中)绿水青山就是金山银山,为了创造良好的生态生活环境,我省2017年一季度清理垃圾约1.16×107方,数字1.16×107表示()A.1.16亿 B.116万 C.1160万 D.11.6亿【变式1-3】近似数3.5的准确值a的取值范围是()A.3.45≤a≤3.55 B.3.4<a<3.6 C.3.45≤a<3.55 D.3.45<a≤3.55【考点2表示相反意义的量】【方法点拨】解决此类问题关键是明确正负数在题目中的实际意义从而进一步求解.【例2】(2018秋•襄州区期中)一箱苹果的重量标识为“10±0.25”千克,则下列每箱苹果重量中合格的是()A.9.70千克 B.10.30千克 C.9.60千克 D.10.21千克【变式2-1】(2018秋•睢宁县期中)某粮店出售4种品牌的面粉,袋上分别标有质量为(20±0.1)kg、(20±0.2)kg、(20±0.3)kg、(20±0.4)kg,这种合格面粉最多相差()A.0.4kg B.0.5kg C.0.6kg D.0.8kg【变式2-2】(2018秋•慈溪市期中)213路公交车从起点开始经过A,B,C,D四站到达终点,各站上下车人数如下(上车为正,下车为负)例如(7,﹣4)表示该站上车7人,下车4人.现在起点站有15人,A(4,﹣8),B(6,﹣5),C(7,﹣3),D(1,﹣4).车上乘客最多时有()名.A.13 B.14 C.15 D.16【变式2-3】(2018秋•封开县期中)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.﹣3.5 B.+2.5 C.﹣0.6 D.+0.7【考点3有理数相关概念】【方法点拨】解决此类问题需理解并熟记有理数相关概念,如①整数和分数统称为有理数;②正有理数、0和负有理数亦可称为有理数;③只有符号不同的两个数叫做互为相反数;④在数轴上原点的两旁,离开原点距离相等的两个点所表示的数,叫做互为相反数;⑤数轴上表示数a的点与原点的距离叫做数a的绝对值;⑥一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.【例3】(2018秋•江城区期中)下列说法中正确的是()A.正数和负数统称为有理数 B.有理数是指整数、分数、正有理数、负有理数和0五类 C.一个有理数不是整数,就是分数 D.整数包括正整数和负整数【变式3-1】(2018秋•常熟市期中)下列各数:,1.010010001,,0,﹣π,﹣2.626626662…,,其中有理数的个数是()A.3 B.4 C.5 D.6【变式3-2】下列说法正确的是()A.正数与负数互为相反数 B.符号不同的两个数互为相反数 C.数轴上原点两旁的两个点所表示的数是互为相反数 D.任何一个有理数都有它的相反数【变式3-3】(2018秋•东台市期中)下列说法正确的是()A.绝对值等于3的数是﹣3 B.绝对值不大于2的数有±2,±1,0 C.若|a|=﹣a,则a≤0 D.一个数的绝对值一定大于这个数的相反数【考点4利用数轴判断符号】【方法点拨】解决此类问题需由数轴得知字母所表示的数的正负性,再根据有理数加、减、乘、除、乘方、绝对值的意义以及数轴上右边点的数总比左边的数大判断即可.【例4】(2018秋•宿松县期末)有理数a,b在数轴上的表示如图所示,则下列结论中:①ab<0,②﹣a>﹣b,③a+b<0,④a﹣b<0,⑤a<|b|,正确的有()A.2个 B.3个 C.4个 D.5个【变式4-1】(2018秋•西城区期末)如图,数轴上A,B两点对应的数分别是a和b,对于以下四个式子:①2a﹣b;②a+b;③|b|﹣|a|:④,其中值为负数的是()A.①② B.③④ C.①③ D.②④【变式4-2】(2018秋•九龙坡区校级期中)如图,数轴上A、B两点分别对应有理数a、b,则下列结论:①ab<0;②a+b>0;③a﹣b>1;④a2﹣b2<0,其中正确的有()A.1个 B.2个 C.3个 D.4个【变式4-3】(2018秋•黄陂区期中)有理数a、b、c在数轴上对应的点的位置,如图所示:①abc<0;②|a﹣b|+|b﹣c|=|a﹣c|;③(a﹣b)(b﹣c)(c﹣a)>0;④|a|<1﹣bc,以上四个结论正确的有()个.A.4 B.3 C.2 D.1【考点5绝对值及偶次乘方的非负性】【方法点拨】直接利用绝对值及偶次乘方的非负数的性质分别得出字母的值,进而得出答案.【例5】(2019春•瑞安市期中)若|x+2|+(x+3y+1)2=0,则yx的值为.【变式5-1】(2018秋•蔡甸区期末)若(x﹣2)2与|x+2y|互为相反数,则y﹣x=.【变式5-2】(2018秋•滨湖区校级月考)当x时,2﹣(x+3)2有最大值.【变式5-3】(2018秋•江南区校级月考)当x=时,﹣10+|x﹣1|有最小值,最小值为.【考点6利用相反数、倒数、绝对值定义求值】【方法点拨】解决此类问题需熟知两个互为相反数的数和为0,两个互为倒数的数乘积为1,值得注意的是已知一个数的绝对值为非0的数,那么这个数应该有两个,此时应注意分类讨论,结果往往有两个.【例6】(2018秋•富顺县期中)若a,b互为相反数,c,d互为倒数,m的绝对值为4.(1)直接写出a+b,cd,m的值;(2)求m+cd+的值.【变式6-1】(2019春•白塔区校级月考)已知a,b互为相反数,c,d互为倒数,m的绝对值等于3,求m2+(cd+a+b)×m+(cd)2018的值.【变式6-2】(2018秋•临洮县月考)若a、b互为相反数,c、d互为倒数,p的绝对值等于2,则关于x的方程(a+b)x2+3cd•x﹣p2=0的解是多少?【变式6-3】(2018秋•湖里区校级月考)已知:有理数m所表示的点与﹣1表示的点距离4个单位,a,b互为相反数,且都不为零,c,d互为倒数.求:2a+2b+(a+b﹣3cd)﹣m的值.【考点7利用绝对值、乘方的性质求值】【方法点拨】解决此类问题需熟知一个数的绝对值或乘方是一个正数,那么这个数应该有两个,需注意进行分类讨论,另外会熟练运用绝对值的意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.包括逆向用法.【例7】(2018秋•江阴市校级月考)若实数a,b满足a2=16,|b|=6,且a﹣b<0,求a+b的值.【变式7-1】(2018秋•孝南区月考)已知|a|=8,b2=36,若|a﹣b|=b﹣a,求a+b的值.【变式7-2】(2018秋•江岸区期中)已知|x+4|=5,(1﹣y)2=9,且x﹣y<0,求2x+y的值.【变式7-3】(2018秋•泰兴市校级月考)若|a|=2,|b|=3,|c|=6,|a+b|=﹣(a+b),|b+c|=b+c.计算a+b﹣c的值.【考点8有理数混合运算】【方法点拨】解决此类问题需熟练掌握有理数混合运算的先后顺序,先算乘方,再算乘除,最后算加减,有括号的先算括号里,值得注意有些题可能会运用运算律进行简便运算.【例8】(2019春•黄州区校级月考)计算:(1)(2)【变式8-1】(2018秋•宝应县期末)计算:(1)(2)【变式8-2】(2019春•沙坪坝区校级月考)计算:(1).(2).【变式8-3】(2018秋•渝中区校级期末)有理数的计算:(1)(2)【考点9有理数混合运算的应用】【方法点拨】对于应用题理解题意是解决此类题型的关键.【例9】(2018秋•新疆期末)某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):星期一二三四五六日增减/辆﹣1+3﹣2+4+7﹣5﹣10(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)本周总生产量是多少?比原计划增加了还是减少了?增减数为多少?【变式9-1】(2018秋•康巴什校级月考)根据实验测定:高度每增加1千米,气温大约变化量为﹣6℃,某登山运动员攀登2km后,(1)气温有什么变化?(2)过一会后运动员在攀登途中发回信息,报告他所在高度的气温为﹣15℃,如果当时地面温度为3℃,求此时该登山运动员攀登了少千米?【变式9-2】(2018秋•雁塔区校级期末)快递配送员王叔叔一直在一条南北走向的街道上送快递,如果规定向北为正,向南为负,某天他从出发点开始所行走的路程记录为(长度单位:千米):+3,﹣4,+2.+3.﹣1,﹣1,﹣3(1)这天送完最后一个快递时,王叔叔在出发点的什么方向,距离是多少?(2)如果王叔叔送完快递后,需立即返回出发点,那么他这天送快递(含返回)共耗油多少升(已知每千米耗油0.2升)?【变式9-3】小明是“环保小卫士”,课后他经常关心环境天气的变化,最近他了解到上周白天的平均气温,如下表(+表示比前一天升了,﹣表示比前一天下降了.单位:℃)星期一二三四五六七气温变化+1.1﹣0.3+0.2+0.4+1+1.4﹣0.3已知上周周日平均气温是16.9℃,回答下列问题:(1)这一周哪天的℃平均气温最高是多少?(2)计算这一周每天的平均气温?(3)小明了解到本地的平均气温同期历史最高气温是17.2℃,最低气温是4.2℃,用一句话概括本地的气温变化.【考点10有关数轴的探究题】【方法点拨】解决此类问题数形结合思想是关键.【例10】(2018秋•海淀区校级期中)如图,半径为1的小圆与半径为2的大圆,有一个公共点与数轴上的原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位,(1)若小圆不动,大圆沿数轴来回滚动,规定大圆向右滚动的时间记为正数,向左滚动时间即为负数,依次滚动的情况录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,+6①第次滚动后,大圆与数轴的公共点到原点的距离最远;②当大圆结束运动时,大圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(2)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距9π,求此时两圆与数轴重合的点所表示的数.【练10-1】(2018秋•江岸区校级月考)如图,数轴上A,B两点对应的数分别﹣4,8.有一动点P从点A出发第一次向左运动1个单位长度;然后在新的位置第二次运动,向右运动2个单位长度;在此位置第三次运动,向左运动3个单位长度,…按照如此规律不断地左右运动(1)当运动到第2018次时,求点P所对应的有理数.(2)点P会不会在某次运动时恰好到达某一个位置,使点P到点B的距离是点P到点A的距离的3倍?若可能请求出此时点P的位置,若不可能请说明理由.【练10-2】(2018秋•淮阴区期中)已知在纸面上有一数轴(如图1),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣4表示的点与表示的点重合;(2)若﹣2表示的点与8表示的点重合,回答以下问题:①16表示的点与表示的点重合;②如图2,若数轴上A、B两点之间的距离为2018(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是、.(3)如图3,若m和n表示的点C和点D经折叠后重合,(m>n>0),现数轴上P、Q两点之间的距离为a(P在Q的左侧),且P、Q两点经折叠后重合,求P、Q两点表示的数分别是多少?(用含m,n,a的代数式表示)【练10-3】(2018秋•海淀区校级期中)下面材料:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|当A、B两点都不在原点时,(1)如图2,点A、B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|(2)如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|(3)如图4,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=a﹣b=|a﹣b|综上,数轴上A、B两点的距离|AB|=|a﹣b|回答下列问题:(1)数轴上表示﹣2和﹣5两点之间的距离是;(2)数轴上表示x和﹣1的两点A、B之间的距离是|x+1|,如果|AB|=2,那么x为;(3)当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.专题02整式的加减章末重难点题型汇编【举一反三】【考点1代数式书写规范】【方法点拨】代数式书写规范:①数和字母相乘,可省略乘号,并把数字写在字母的前面;②字母和字母相乘,乘号可以省略不写或用“·”表示.一般情况下,按26个字母的顺序从左到右来写;③后面带单位的相加或相减的式子要用括号括起来;④除法运算写成分数形式,即除号改为分数线;⑤带分数与字母相乘时,带分数要写成假分数的形式;⑥当“1”与任何字母相乘时,“1”省略不写;当“-1”乘以字母时,只要在那个字母前加上“-”号.【例1】(2019秋•锦江区校级期中)下列各式:①;②;③;④;⑤;⑥千克;其中,不符合代数式书写要求的有A.5个 B.4个 C.3个 D.2个【变式1-1】(2018秋•广陵区校级期中)下列代数式的书写格式正确的是A. B. C. D.【变式1-2】(2019秋•滦县期中)下列式子中,符合代数式书写格式的有①;②;③;④天;⑤A.2个 B.3个 C.4个 D.5个【变式1-3】(2019秋•宜宾县期中)在下列的代数式的写法中,表示正确的一个是A.“负的平方”记作 B.“与的积”记作 C.“的3倍”记作 D.“除以的商”记作【考点2同类项及合并同类项】【方法点拨】(1)同类项的判别方法:抓住“两个相同”:一是所含的字母要完全相同,二是相同字母的指数要相同,这两个条件缺一不可;(2)合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.【例2】(2018秋•徐州期中)下列各组中的两个项不属于同类项的是A.和 B.和 C.和 D.和【变式2-1】(2018秋•海淀区校级期中)下列计算正确的是A. B. C. D.【变式2-2】(2019秋•荔湾区期中)若单项式与的差仍是单项式,则A.5 B. C.1 D.4【变式2-3】(2019秋•全椒县期中)一个五次六项式加上一个六次七项式合并同类项后一定是A.十一次十三项式 B.六次十三项式 C.六次七项式 D.六次整式【考点3列代数式】【方法点拨】列代数式:①要抓住关键词语,明确它们的意义以及它们之间的关系;②理清语句层次明确运算顺序;③牢记一些概念和公式.【例3】(2019秋•罗湖区期末)某商品原价为元,由于供不应求,先提价进行销售,后因供应逐步充足,价格又一次性降价,则最后的实际售价为A.元 B.元 C.元 D.元【变式3-1】(2019秋•嘉兴期末)已知一个两位数,个位数字为,十位数字比个位数字大,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为A. B. C. D.【变式3-2】(2018秋•洪山区期中)某部门组织调运一批物资从地到地,一运送物资车从地出发,出发第一小时内按原计划的60千米小时匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前20分钟到达目的地.设地到地距离为千米,则根据题意得原计划规定的时间为A. B. C. D.【变式3-3】(2019•长丰县期中)如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图,下列表示,,,之间关系的式子中不正确的是A. B. C. D.【考点4单项式与多项式概念】【方法点拨】解题关键:①单项式中的数字因数称为这个单项式的系数;②一个单项式中,所有字母的指数的和叫做这个单项式的次数;③多项式里次数最高项的次数就是多项式的次数.【例4】(2019秋•柯桥区期中)单项式的系数是,次数是;是次多项式.【变式4-1】(2018秋•沙坪坝区校级期中)若是关于、的五次单项式,则.【变式4-2】(2019秋•临川区校级期中)多项式是关于、的四次三项式,则的值为.【变式4-3】(2018秋•莱阳市期中)当时,多项式中不含项.【考点5整式加减情景题】【例5】(2019春•沂源县期中)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式;(2)若,求所捂二次三项式的值.【变式5-1】(2018秋•高邮市期中)小聪在做题目:化简发现的系数“”被污染了,看不清楚.(1)小聪自己想了个“”表示的数,得到答案为,求:小聪想的“”所表示的数;(2)老师看到了说:“你想错了,该题化简的结果是常数.”请通过计算说明原题中“”所表示的数.【变式5-2】(2018秋•徐闻县期中)小刚在计算一个多项式减去多项式的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减式后面两项没有变号,结果得到的差是.(1)求这个多项式;(2)求出这两个多项式运算的正确结果;(3)当时,求(2)中结果的值.【变式5-3】(2018秋•新洲区期中)已知含字母,的代数式是:.(1)化简这个代数式.(2)小明取,互为倒数的一对数值代入化简的代数式中,恰好计算得代数式的值等于0.那么小明所取的字母的值等于多少?(3)聪明的小智从化简的代数式中发现,只要字母取一个固定的数,无论字母取何数,代数式的值恒为一个不变的数,那么小智所取的字母的值是多少呢?【考点6整式加减化简求值】【方法点拨】整式加减化简求值的一般步骤:①去括号、合并同类项.;②代入求值.【例6】(2018秋•蒙阴县期中)先化简,再求值:,其中,.【变式6-1】(2018秋•朝阳区期中)先化简,再求值:已知,求的值.【变式6-2】(2018秋•金堂县期中)已知,,先求,并求当,时,的值.【变式6-3】(2018秋•杭州期中)化简求值:已知整式与整式的差不含和项,试求的值.【考点7代数式求值—整体代入法】【方法点拨】整体代入的思想是把联系紧密的几个量作为一个整体来看的数学思想,运用这种方法,有时可使复杂问题简单化.【例7】(2019秋•锡山区校级期中)化简与求值:(1)若,则代数式的值为;(2)若,则代数式的值为;(3)若,请仿照以上求代数式值的方法求出的值.【变式7-1】(2019秋•余姚市期末)已知:,求的值.【变式7-2】(2019秋•崇川区期末)已知当,时,,求当,时,式子的值.【变式7-3】(2018秋•慈利县期中)先阅读下面例题的解答过程,再解答后面的问题.例:已知代数式的值为2,求的值.解:由得,所以.问题:(1)已知代数式的值为6,求的值;(2)已知代数式的值为,求的值.【考点8代数式求值—赋值法】【方法点拨】解决此类问题通常需要去特殊值将其代入等式中,能够得到所求代数式的形式,从而知道代数式的值.【例8】(2018秋•江都区期中)已知,求:(1)的值;(2)的值.【变式8-1】(2018秋•莲湖区期中)已知,对于任意的的值都成立,求下列各式的值:(1);(2).【变式8-2】(2019秋•杨浦区校级月考)已知,则的值为多少?【变式8-3】(2019秋•诸暨市校级期中)已知对于任意的都成立.求:(1)的值(2)的值(3)的值.【考点9代数式求值—面积问题】【例9】(2018秋•淮阴区期中)如图所示(1)用代数式表示长方形中阴影部分的面积;(2)当,时,求其阴影部分的面积.(其中取【变式9-1】(2018秋•盐都区期中)如图,长方形的长为,宽为.现以长方形的四个顶点为圆心,宽的一半为半径在四个角上分别画出四分之一圆.(1)用含,的代数式表示图中阴影部分的面积;(2)当,时,求图中阴影部分的面积.取【变式9-2】(2018秋•玄武区期中)如图所示是一个长方形,阴影部分的面积为(单位:.根据图中尺寸,解答下列问题:(1)用含的代数式表示阴影部分的面积;(2)若,求的值.【变式9-3】(2018秋•甘井子区期中)如图(图中单位长度:求:(1)阴影部分面积(用含的代数式表示);(2)当求阴影部分的面积取3.14,结果精确到.【考点10代数式求值—方案设计问题】【例10】(2018秋•南安市期末)福建省教育厅日前发布文件,从2019年开始,体育成绩将按一定的原始分计入中考总分.某校为适应新的中考要求,决定为体育组添置一批体育器材.学校准备在网上订购一批某品牌足球和跳绳,在查阅天猫网店后发现足球每个定价150元,跳绳每条定价30元.现有、两家网店均提供包邮服务,并提出了各自的优惠方案.网店:买一个足球送一条跳绳;网店:足球和跳绳都按定价的付款.已知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校实验室设备管理制度
- 社区网络安全宣传实施方案
- 教育培训机构在线教育平台建设及运营支持方案
- 体育赛事志愿者管理行业市场前瞻与未来投资战略分析报告
- 招聘广告行业市场现状分析及未来三至五年行业预测报告
- 商业知识和技能的传授培训行业发展趋势预测及战略布局建议报告
- 农业喷灌系统行业发展前景及投资风险预测分析报告
- 动物用电喂食机市场发展现状调查及供需格局分析预测报告
- 智能城市基础设施行业现状分析及未来三至五年行业发展报告
- IP版权运营行业风险投资态势及投融资策略指引报告
- 《消防队员培训教材》课件
- 《火灾应急措施培训》课件
- 国开《小学数学教学研究》形考期末大作业答案
- 职称申报诚信承诺书(个人)附件4
- 软件开发行业安全生产应急预案
- 仓库管理培训课件
- 【初中生物】病毒教学课件2024-2025学年人教版生物七年级上册
- 2024年秋江苏开放大学文献检索与论文写作参考范文一:行政管理专业
- 2024小学四年级上学期家长会课件
- 2024年秋新人教版7年级上册语文教学课件 第6单元 写作:发挥联想和想象
- 2024-2025学年人教版七年级上册数学期末专项复习:期末必刷压轴60题(原卷版)
评论
0/150
提交评论