版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省宿州市埇桥区2023-2024学年毕业升学考试模拟卷数学卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为()A. B.2 C. D.2.下列各组单项式中,不是同类项的一组是()A.和 B.和 C.和 D.和33.如图,双曲线y=(k>0)经过矩形OABC的边BC的中点E,交AB于点D,若四边形ODBC的面积为3,则k的值为()A.1 B.2 C.3 D.64.若点A(2,),B(-3,),C(-1,)三点在抛物线的图象上,则、、的大小关系是()A.B.C.D.5.已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围内有两个相等的实数根,则c的取值范围是(
)A.c=4B.﹣5<c≤4C.﹣5<c<3或c=4D.﹣5<c≤3或c=46.函数y=1-xA.x>1 B.x<1 C.x≤1 D.x≥17.多项式4a﹣a3分解因式的结果是()A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)28.已知一次函数y=kx+3和y=k1x+5,假设k<0且k1>0,则这两个一次函数的图像的交点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.将某不等式组的解集表示在数轴上,下列表示正确的是()A. B.C. D.10.若关于x的分式方程的解为非负数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠4二、填空题(共7小题,每小题3分,满分21分)11.如图,一艘海轮位于灯塔P的北偏东方向60°,距离灯塔为4海里的点A处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长_____海里.12.化简:x2-4x+4x13.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.14.若式子有意义,则实数x的取值范围是_______.15.计算:=_____.16.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场是_____(请写出盈利或亏损)_____元.17.已知一组数据x1,x2,x3,x4,x5的平均数是3,则另一组新数据x1+1,x2+2,x3+3,x4+4,x5+5的平均数是_____.三、解答题(共7小题,满分69分)18.(10分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.19.(5分)某工程队承担了修建长30米地下通道的任务,由于工作需要,实际施工时每周比原计划多修1米,结果比原计划提前1周完成.求该工程队原计划每周修建多少米?20.(8分)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.21.(10分)某小区为了安全起见,决定将小区内的滑滑板的倾斜角由45°调为30°,如图,已知原滑滑板AB的长为4米,点D,B,C在同一水平地面上,调整后滑滑板会加长多少米?(结果精确到0.01米,参考数据:,,)22.(10分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?23.(12分)解方程:x2-4x-5=024.(14分)有一个二次函数满足以下条件:①函数图象与x轴的交点坐标分别为A(1,0),B(x1,y1)(点B在点A的右侧);②对称轴是x=3;③该函数有最小值是﹣1.(1)请根据以上信息求出二次函数表达式;(1)将该函数图象x>x1的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),结合画出的函数图象求x3+x4+x5的取值范围.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】
根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.【详解】如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6××1×1×sin60°=.故选C.【点睛】本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.2、A【解析】
如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.【详解】根据题意可知:x2y和2xy2不是同类项.故答案选:A.【点睛】本题考查了单项式与多项式,解题的关键是熟练的掌握单项式与多项式的相关知识点.3、B【解析】
先根据矩形的特点设出B、C的坐标,根据矩形的面积求出B点横纵坐标的积,由D为AB的中点求出D点的横纵坐标,再由待定系数法即可求出反比例函数的解析式.【详解】解:如图:连接OE,设此反比例函数的解析式为y=(k>0),C(c,0),则B(c,b),E(c,),设D(x,y),∵D和E都在反比例函数图象上,∴xy=k,即,∵四边形ODBC的面积为3,∴∴∴bc=4∴∵k>0∴解得k=2,故答案为:B.【点睛】本题考查了反比例函数中比例系数k的几何意义,涉及到矩形的性质及用待定系数法求反比例函数的解析式,难度适中.4、C【解析】首先求出二次函数的图象的对称轴x==2,且由a=1>0,可知其开口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以.总结可得.故选C.点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数的图象性质.5、D【解析】解:由对称轴x=2可知:b=﹣4,∴抛物线y=x2﹣4x+c,令x=﹣1时,y=c+5,x=3时,y=c﹣3,关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围有实数根,当△=0时,即c=4,此时x=2,满足题意.当△>0时,(c+5)(c﹣3)≤0,∴﹣5≤c≤3,当c=﹣5时,此时方程为:﹣x2+4x+5=0,解得:x=﹣1或x=5不满足题意,当c=3时,此时方程为:﹣x2+4x﹣3=0,解得:x=1或x=3此时满足题意,故﹣5<c≤3或c=4,故选D.点睛:本题主要考查二次函数与一元二次方程的关系.理解二次函数与一元二次方程之间的关系是解题的关键.6、C【解析】试题分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.试题解析:根据题意得:1-x≥0,解得:x≤1.故选C.考点:函数自变量的取值范围.7、B【解析】
首先提取公因式a,再利用平方差公式分解因式得出答案.【详解】4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).故选:B.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.8、B【解析】
依题意在同一坐标系内画出图像即可判断.【详解】根据题意可作两函数图像,由图像知交点在第二象限,故选B.【点睛】此题主要考查一次函数的图像,解题的关键是根据题意作出相应的图像.9、B【解析】分析:本题可根据数轴的性质画出数轴:实心圆点包括该点用“≥”,“≤”表示,空心圆点不包括该点用“<”,“>”表示,大于向右小于向左.点睛:不等式组的解集为−1⩽x<3在数轴表示−1和3以及两者之间的部分:故选B.点睛:本题考查在数轴上表示不等式解集:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.10、C【解析】试题分析:分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为1求出a的范围即可.解:去分母得:2(2x﹣a)=x﹣2,解得:x=,由题意得:≥1且≠2,解得:a≥1且a≠4,故选C.点睛:此题考查了分式方程的解,需注意在任何时候都要考虑分母不为1.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】分析:首先由方向角的定义及已知条件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根据平行线的性质得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP•cos∠A=1海里.详解:如图,由题意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP•cos∠A=4×cos60°=4×=1海里.故答案为1.点睛:本题考查了解直角三角形的应用-方向角问题,平行线的性质,三角函数的定义,正确理解方向角的定义是解题的关键.12、﹣x-2x【解析】
直接利用分式的混合运算法则即可得出.【详解】原式====-x-2故答案为:-x-2【点睛】此题主要考查了分式的化简,正确掌握运算法则是解题关键.13、【解析】
根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得.【详解】解:所有可能的结果如下表:男1男2女1女2男1(男1,男2)(男1,女1)(男1,女2)男2(男2,男1)(男2,女1)(男2,女2)女1(女1,男1)(女1,男2)(女1,女2)女2(女2,男1)(女2,男2)(女2,女1)由表可知总共有12种结果,每种结果出现的可能性相同.挑选的两位教师恰好是一男一女的结果有8种,所以其概率为挑选的两位教师恰好是一男一女的概率为=,故答案为.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14、x≤2且x≠1【解析】
根据被开方数大于等于1,分母不等于1列式计算即可得解.【详解】解:由题意得,且x≠1,解得且x≠1.故答案为且x≠1.【点睛】本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数.15、-【解析】
根据二次根式的运算法则即可求出答案.【详解】原式=2.故答案为-.【点睛】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.16、亏损1【解析】
设盈利20%的电子琴的成本为x元,设亏本20%的电子琴的成本为y元,再根据(1+利润率)×成本=售价列出方程,解方程计算出x、y的值,进而可得答案.【详解】设盈利20%的电子琴的成本为x元,
x(1+20%)=960,
解得x=10;
设亏本20%的电子琴的成本为y元,
y(1-20%)=960,
解得y=1200;
∴960×2-(10+1200)=-1,
∴亏损1元,
故答案是:亏损;1.【点睛】考查了一元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.17、1【解析】
根据平均数的性质知,要求x1+1,x2+2,x3+3,x4+4、x5+5的平均数,只要把数x1、x2、x3、x4、x5的和表示出即可.【详解】∵数据x1,x2,x3,x4,x5的平均数是3,∴x1+x2+x3+x4+x5=15,则新数据的平均数为=1,故答案为:1.【点睛】本题考查的是样本平均数的求法.解决本题的关键是用一组数据的平均数表示另一组数据的平均数.三、解答题(共7小题,满分69分)18、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析【解析】解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,解得:。答:每台电脑0.5万元,每台电子白板1.5万元。(2)设需购进电脑a台,则购进电子白板(30-a)台,则,解得:,即a=15,16,17。故共有三种方案:方案一:购进电脑15台,电子白板15台.总费用为万元;方案二:购进电脑16台,电子白板14台.总费用为万元;方案三:购进电脑17台,电子白板13台.总费用为万元。∴方案三费用最低。(1)设电脑、电子白板的价格分别为x,y元,根据等量关系:“1台电脑+2台电子白板=3.5万元”,“2台电脑+1台电子白板=2.5万元”,列方程组求解即可。(2)设计方案题一般是根据题意列出不等式组,求不等式组的整数解。设购进电脑x台,电子白板有(30-x)台,然后根据题目中的不等关系“总费用不超过30万元,但不低于28万元”列不等式组解答。19、该工程队原计划每周修建5米.【解析】
找出等量关系是工作时间=工作总量÷工作效率,可根据实际施工用的时间+1周=原计划用的时间,来列方程求解.【详解】设该工程队原计划每周修建x米.由题意得:+1.整理得:x2+x﹣32=2.解得:x1=5,x2=﹣6(不合题意舍去).经检验:x=5是原方程的解.答:该工程队原计划每周修建5米.【点睛】本题考查了分式方程的应用,找到合适的等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率,可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.20、证明过程见解析【解析】
由∠BAE=∠BCE=∠ACD=90°,可求得∠DCE=∠ACB,且∠B+∠CEA=∠CEA+∠DEC=180°,可求得∠DEC=∠ABC,再结合条件可证明△ABC≌△DEC.【详解】∵∠BAE=∠BCE=∠ACD=90°,∴∠5+∠4=∠4+∠3,∴∠5=∠3,且∠B+∠CEA=180°,又∠7+∠CEA=180°,∴∠B=∠7,在△ABC和△DEC中,∴△ABC≌△DEC(ASA).21、改善后滑板会加长1.1米.【解析】
在Rt△ABC中,根据AB=4米,∠ABC=45°,求出AC的长度,然后在Rt△ADC中,解直角三角形求AD的长度,用AD-AB即可求出滑板加长的长度.【详解】解:在Rt△ABC中,AC=AB•sin45°=4×=,在Rt△ADC中,AD=2AC=,AD-AB=-4≈1.1.答:改善后滑板会加长1.1米.【点睛】本题主要考查了解直角三角形的应用,利用这两个直角三角形公共的直角边解直角三角形是解答本题的关键.22、(1)(300﹣10x).(2)每本书应涨价5元.【解析】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x元,则每天就会少售出10x本,所以每天可售出书(300﹣10x)本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.试题解析:(1)∵每本书上涨了x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国旗下的讲话老师演讲稿(素材8篇)
- 2024云计算中心建设运营合同
- 2024年教育培训机构线上课程合作协议
- 2024年文化产业扶持基金投资协议
- 2024年建筑工程联合承包合同
- 2024年携手共赢:品牌联合营销协议
- 无损检测工程项目负责人年终工作总结(5篇)
- 2024年新型自助售货机购买合同
- DB4105T 224-2024 秋季大棚茄子生产技术规程
- 2024年度光伏扶贫项目安装合同
- 2024小学道德与法治新教材培训:教材解读及教学建议
- (正式版)SHT 3046-2024 石油化工立式圆筒形钢制焊接储罐设计规范
- 生涯职业发展展示
- 美国FDA关于食品接触材料的塑料制品法规要求
- 应用地球化学元素特征判别沉积环境
- 人教版四年级下册语文第三单元测试卷及答案(2)
- 田麦久《运动训练学》(第2版)配套题库(含考研真题)
- 商务英语教学课件:unit5 Travel and Visits
- 民航概论课程标准
- MACD二次绿柱缩短的选股公式.doc
- 尾矿库闭库工程施工组织设计方案范本
评论
0/150
提交评论