浙江省绍兴蕺山外国语学校2024年八年级数学第二学期期末经典试题含解析_第1页
浙江省绍兴蕺山外国语学校2024年八年级数学第二学期期末经典试题含解析_第2页
浙江省绍兴蕺山外国语学校2024年八年级数学第二学期期末经典试题含解析_第3页
浙江省绍兴蕺山外国语学校2024年八年级数学第二学期期末经典试题含解析_第4页
浙江省绍兴蕺山外国语学校2024年八年级数学第二学期期末经典试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省绍兴蕺山外国语学校2024年八年级数学第二学期期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在某人才招聘会上,组办方对应聘者进行了“听、说、读、写”四项技能测试,若人才要求是具有强的“听”力,较强的“说与“读“能力及基本的“写”能力,根据这个要求,听、说、读、写”四项技能测试比较合适的权重设计是A. B. C. D.2.关于的方程有实数根,则整数的最大值是()A.6 B.7 C.8 D.93.若a+1有意义,则()A.a≤ B.a<﹣1 C.a≥﹣1 D.a>﹣24.下列根式中,最简二次根式是()A. B. C. D.5.一个正多边形的每一个外角的度数都是60°,则这个多边形的边数是:()A.8 B.7 C.6 D.56.如图所示,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A'点,连接A'B,则线段A'B与线段AC的关系是()A.垂直 B.相等 C.平分 D.平分且垂直7.如图:一个长、宽、高分别为4cm、3cm、12cm的长方体盒子能容下的最长木棒长为()A.11cmB.12cmC.13cmD.14cm8.如图,平行四边形ABCD中,BD⊥AD,∠A=30°,BD=4,则CD的长为()A.2 B.4 C.4 D.89.下列计算正确的是()。A. B. C. D.10.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知,则球的半径长是()A.2 B.2.5 C.3 D.411.已知在一个样本中,41个数据分别落在4个组内,第一、二、四组数据个数分别为5、12、8,则第三组的频数为()A.1.375 B.1.6 C.15 D.2512.如图,在长方形纸片中,,.点是的中点,点是边上的一个动点.将沿所在直线翻折,得到.则长的最小值是()A. B. C. D.二、填空题(每题4分,共24分)13.若关于x的方程=m无解,则m的值为_____.14.如图,已知函数y=x+2b和y=ax+3的图象交于点P,则不等式x+2b>ax+3的解集为________

.15.已知直角坐标系内有四个点A(-1,2),B(3,0),C(1,4),D(x,y),若以A,B,C,D为顶点的四边形是平行四边形,则D点的坐标为___________________.16.已知点(2,7)在函数y=ax+3的图象上,则a的值为____.17.将直线y=2x+4沿y轴向下平移3个单位,则得到的新直线所对应的函数表达式为_____.18.如图,已知,与之间的距离为3,与之间的距离为6,分别等边三角形的三个顶点,则此三角形的边长为__________.三、解答题(共78分)19.(8分)计算:(1);(2).20.(8分)计算21.(8分)先化简,再求值:(1-)÷,其中x=2+.22.(10分)化简:÷(a-4)-.23.(10分)如图,某中学准备在校园里利用院墙的一段再围三面篱笆,形成一个矩形花园(院墙长米),现有米长的篱笆.(1)请你设计一种围法(篱笆必须用完),使矩形花园的面积为米.(2)如何设计可以使得围成的矩形面积最大?最大面积是多少?24.(10分)如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(﹣2,﹣1),与y轴的交点为C,与x轴的交点为D.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOD的面积.25.(12分)某校240名学生参加植树活动,要求每人植树4~7棵,活动结束后抽查了20名学生每人的植树量,并分为四类:A类4棵、B类5棵、C类6棵、D类7棵,将各类的人数绘制成如图所示不完整的条形统计图,回答下列问题:(1)补全条形图;(2)写出这20名学生每人植树量的众数和中位数;(3)估计这240名学生共植树多少棵?26.如图,在四边形ABCD中,AB=BC=3,CD=,DA=5,∠B=90°,求∠BCD的度数

参考答案一、选择题(每题4分,共48分)1、A【解析】

数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.依次即可求解.【详解】解:人才要求是具有强的“听”力,较强的“说与“读“能力及基本的“写”能力,听、说、读、写”四项技能测试比较合适的权重设计是.故选:.【点睛】本题考查加权平均数,解题的关键是明确题意,找出所求问题需要的条件,会计算加权平均数.2、C【解析】

方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a-6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.【详解】当a-6=0,即a=6时,方程是-1x+6=0,解得x=;

当a-6≠0,即a≠6时,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得≈1.6,

取最大整数,即a=1.故选C.3、C【解析】

直接利用二次根式的定义计算得出答案.【详解】若a+1有意义,则a+1≥0,解得:a≥﹣1.故选:C.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.4、D【解析】试题解析:最简二次根式应满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.A选项中被开方数含有分母;B选项被开方数含有能开得尽方的因数4;C选项被开方数含有能开得尽方的因式.只有D选项符合最简二次根式的两个条件,故选D.5、C【解析】分析:正多边形的外角计算公式为:,根据公式即可得出答案.详解:根据题意可得:n=360°÷60°=6,故选C.点睛:本题主要考查的是正多边形的外角计算公式,属于基础题型.明确公式是解决这个问题的关键.6、D【解析】

先根据题意画出图形,再利用勾股定理结合网格结构即可判断线段A′B与线段AC的关系.【详解】解:如图,将点A先向下平移3格,再向左平移1格到达A′点,连接A′B,与线段AC交于点O.∵A′O=OB=,AO=OC=2,∴线段A′B与线段AC互相平分,又∵∠AOA′=45°+45°=90°,∴A′B⊥AC,∴线段A′B与线段AC互相垂直平分.故选D.【点睛】本题考查了平移的性质,勾股定理,正确利用网格求边长长度及角度是解题的关键.7、C【解析】试题分析:∵侧面对角线BC2=32+42=52,∴CB=5m,∵AC=12m,∴AB==13(m),∴空木箱能放的最大长度为13m,故选C.考点:勾股定理的应用.8、D【解析】

根据30°所对的直角边是斜边的一半即可求出AB,然后利用平行四边形的性质即可求出结论.【详解】解:∵BD⊥AD,∴△ABD为直角三角形,在Rt△ABD中,BD=4,∠A=30°,∴AB=2BD=8,∵四边形ABCD为平行四边形,∴CD=AB=8,故选:D.【点睛】此题考查的是直角三角形的性质和平行四边形的性质,掌握30°所对的直角边是斜边的一半和平行四边形的对边相等是解决此题的关键.9、C【解析】

根据二次根式的运算法则即可求出答案.【详解】解:(A)原式=,故A错误;(B)原式=3,故B错误;(C)原式=,故C正确;(D)原式=2,故D错误;故选:C【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.10、B【解析】

取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4-x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【详解】如图:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故选B.【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.11、C【解析】

解:第三组的频数=41-5-12-8=15故选:C.【点睛】本题考查频数,掌握概念是解题关键.12、A【解析】

以点E为圆心,AE长度为半径作圆,连接CE,当点G在线段CE上时,GC的长取最小值,根据折叠的性质可知GE=1,在Rt△BCE中利用勾股定理可求出CE的长度,用CE-GE即可求出结论.【详解】解:以点E为圆心,AE长度为半径作圆,连接CE,当点G在线段CE上时,GC的长取最小值,如图所示.根据折叠可知:,在Rt△BCE中,,,∴GC的最小值=CE-GE=,故选:A.【点睛】本题考查了翻折变换、矩形的性质以及勾股定理,利用作圆,找出A′C取最小值时点A′的位置是解题的关键.二、填空题(每题4分,共24分)13、或.【解析】

分式方程无解的两种情况是:1.分式方程去分母化为整式方程,整式方程无解;2.整式方程的解使分式方程分母为零.据此分析即可.【详解】解:方程两边同时乘以(2x﹣3),得:x+4m=m(2x﹣3),整理得:(2m﹣1)x=7m①当2m﹣1=0时,整式方程无解,m=②当2m﹣1≠0时,x=,x=时,原分式方程无解;即,解得m=故答案为:或.【点睛】本题考查了分式方程的解,解决本题的关键是明确分式方程无解的条件几种情况,然后再分类讨论.14、x>1【解析】解:由图象可知:当x>1时,.故答案为:x>1.15、(5,2),(-3,6),(1,-2).【解析】

D的位置分三种情况分析;由平行四边形对边平行关系,用平移规律求出对应点坐标.【详解】解:根据平移性质可以得到AB对应DC,所以,由B,C的坐标关系可以推出A,D的坐标关系,即D(-1-2,2+4),所以D点的坐标为(-3,6);同理,当AB与CD对应时,D点的坐标为(5,2);当AC与BD对应时,D点的坐标为(1,-2)故答案为:(5,2),(-3,6),(1,-2).【点睛】本题考核知识点:平行四边形和平移.解题关键点:用平移求出点的坐标.16、1.【解析】

利用待定系数法即可解决问题;【详解】∵点(1,7)在函数y=ax+3的图象上,∴7=1a+3,∴a=1,故答案为:1.【点睛】本题考查一次函数图象上点的坐标特征,解题的关键是熟练掌握待定系数法解决问题,属于中考常考题型.17、y=2x+1【解析】

根据函数的平移规律,利用口诀上加下减,可得答案.【详解】解:直线y=2x+4经过点(0,4),将直线下平移3个单位,则点(0,4)也向下平移了3个单位,则平移后的直线经过点(0,1),∵平移后的直线与原直线平行,∴平移后的直线设为y=2x+k,∵y=2x+k过点(0,1),代入点(0,1)得k=1,∴新直线为y=2x+1故答案为:y=2x+1【点睛】本题考查了一次函数图象与几何变换,利用函数图象的平移规律:上加下减,左加右减是解题关键.18、【解析】

如图,构造一线三等角,使得.根据“ASA”证明,从而,再在Rt△BEG中求出CE的长,再在Rt△BCE中即可求出BC的长.【详解】如图,构造一线三等角,使得.∵a∥c,∴∠1=∠AFD=60°,∴∠2+∠CAF=60°.∵a∥b,∴∠2=∠3,∴∠3+∠CAF=60°.∵∠3+∠4=60°,∴∠4=∠CAF,∵b∥c,∴∠4=∠5,∴∠5=∠CAF,又∵AC=BC,∠AFC=∠CGB,∴,∴CG=AF.∵∠ACF=60°,∴DAF=30°,∴DF=AF,∵AF2=AD2+DF2,∴,∴,同理可求,∴,∴.【点睛】本题考查了平行线的性质,全等三角形的判定与性质,含30°角的直角三角形的性质,以及勾股定理,正确作出辅助线是解答本题的关键.三、解答题(共78分)19、(1)5;(2)6+2【解析】

(1)先把各二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和平方差公式计算.【详解】解:(1)原式=2+4-=5;(2)原式=2+2+3-(2-3)=5+2+1=6+2.【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.利用乘法公式计算是解决(2)小题的关键.20、(1);(2)1.【解析】

(1)先根据二次根式的乘法法则和除法法则进行化简,然后再根据二次根式加减法法则进行计算即可,\(2)根据平方差公式进行计算即可,【详解】解:,,,,,.【点睛】本题主要考查二次根式的乘除,加减计算,解决本题的关键是要熟练掌握二次根式的乘除,加减法法则.21、;.【解析】

先根据分式的运算法则化简,再把x的值代入计算即可.【详解】(1-)÷=×=×=∴当x=2+时,原式==.【点睛】本题主要考查分式的计算,掌握分式的运算法则是解题的关键.22、【解析】

先利用平方差公式对进行因式分解,然后把除法运算转化为乘法运算,能约分的要约分,最后进行减法运算即可.【详解】原式===【点睛】本题主要考查分式的混合运算,掌握分式混合运算顺序和法则是解题的关键.23、见详解.【解析】

(1)设AB为xm,则BC为(40-2x)m,根据题意可得等量关系:矩形的面积=长×宽=150,根据等量关系列出方程,再解即可;

(2)根据题意和图形可以得到S与x之间的函数关系,将函数关系式化为顶点式,即可解答本题.【详解】解:(1)设AB为xm,则BC为(40-2x)m,根据题意可得:X(40-2x)=150解得:x1=,x2=15.:当x=时,40-2x=30>25.故不满足题意,应舍去.②当x=15时,40-2x=10<25,故当x=15时,满足实际要求.∴当x=15时,使矩形花园的面积为米.(2)设矩形的面积为S,则依意得:S=X(40-2x)=-2x2+40x=-2(x-5)2+50∴当x=5,时S有最大值.最大值为50.【点睛】本题考查了二次函数的实际应用,正理解题意找到等量关系列出方程是解题的关键.24、(1)y=x+1;(2)C(0,1);(3)1【解析】试题分析:(1)首先根据正比例函数解析式求得m的值,再进一步运用待定系数法求得一次函数的解析式;

(2)根据(1)中的解析式,令x=0求得点C的坐标;

(3)根据(1)中的解析式,令y=0求得点D的坐标,从而求得三角形的面积.试题解析:(1)∵正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),

∴2m=2,

m=1.

把(1,2)和(-2,-1)代入y=kx+b,得解得:则一次函数解析式是y=x+1;(2)令x=0,则y=1,即点C(0,1);(3)令y=0,则x=-1.则△AOD的面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论