2024届广西兴业县联考八年级数学第二学期期末复习检测试题含解析_第1页
2024届广西兴业县联考八年级数学第二学期期末复习检测试题含解析_第2页
2024届广西兴业县联考八年级数学第二学期期末复习检测试题含解析_第3页
2024届广西兴业县联考八年级数学第二学期期末复习检测试题含解析_第4页
2024届广西兴业县联考八年级数学第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广西兴业县联考八年级数学第二学期期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为()A.12 B.24 C.36 D.482.ABCD是一块正方形场地,小华和小萌在AB上取一点E,测量得EC=30,EB=10,这块场地的对角线长是()A.10 B.30 C.40 D.503.如图,y1,y2分别表示燃油汽车和纯电动汽车行驶路程S(单位:千米)与所需费用y(单位:元)的关系,已知纯电动汽车每千米所需的费用比燃油汽车每千米所需费用少0.54元,设纯电动汽车每千米所需费用为x元,可列方程为()A. B.C. D.4.下列各曲线中不能表示y是x函数的是()A. B. C. D.5.已知函数,不在该函数图象上的点是()A. B. C. D.6.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.7.下列等式中,不成立的是A. B.C. D.8.函数的自变量的取值范围是()A. B. C. D.9.如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交边于点.若点为边的中点,点为线段EF上一动点,则周长的最小值为()A. B. C. D.10.如图,矩形的对角线,交于点,,,则的长为A. B. C. D.11.将点向左平移4个单位长度得点,则点的坐标是()A. B. C. D.12.函数与在同一坐标系中的图象可能是()A. B.C. D.二、填空题(每题4分,共24分)13.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3,则△ABC的周长是_______.14.将点A(1,-3)向左平移3个单位长度,再向上平移5个单位长度后得到的点A′的坐标为______________.15.如图,已知平行四边形,,是边的中点,是边上一动点,将线段绕点逆时针旋转至,连接,,,,则的最小值是____.16.如图是一个棱长为6的正方体盒子,一只蚂蚁从棱上的中点出发,沿盒的表面爬到棱上后,接着又沿盒子的表面爬到盒底的处.那么,整个爬行中,蚂蚁爬行的最短路程为__________.17.某水池容积为300m3,原有水100m3,现以xm3/min的速度匀速向水池中注水,注满水需要ymin,则y关于x的函数表达式为________.18.平行四边形ABCD中,∠ABC的平分线将AD边分成的两部分的长分别为2和3,则平行四边形ABCD的周长是_____.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(-3,32(1)直接写出B、C、D三点的坐标;(1)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反比例函数y=kx(20.(8分)如图,四边形和四边形都是平行四边形.求证:四边形是平行四边形.21.(8分)分式化简:(a-)÷22.(10分)阅读下面的解题过程,解答后面的问题:如图1,在平面直角坐标系xoy中,Ax1,y1,Bx2,解:分别过A,C做x轴的平行线,过B,C做y轴的平行线,两组平行线的交点如图1所示,设Cx0,y0,则由图1可知:x0=∴线段AB的中点C的坐标为x(应用新知)利用你阅读获得的新知解答下面的问题:(1)已知A-1,4,B3,-2,则线段(2)平行四边形ABCD中,点A,B,C的坐标分别为1,-4,0,2,5,6,利用中点坐标公式求点D的坐标。(3)如图2,点B6,4在函数y=12x+1的图象上,A5,2,C在x轴上,D在函数y=12x+1的图象上,以A,B,23.(10分)在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE∥DB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若∠DAB=60°,且AB=4,求OE的长.24.(10分)如图所示,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=3,BC=4,求四边形OCED的周长.25.(12分)计算:﹣3+2.26.如图,点E、F分别在矩形ABCD的边BC、AD上,把这个矩形沿EF折叠后,点D恰好落在BC边上的G点处,且∠AFG=60°.(1)求证:GE=2EC;(2)连接CH、DG,试证明:CH//DG.

参考答案一、选择题(每题4分,共48分)1、B【解析】

首先根据题意画出图形,由一个菱形的边长为5,其中一条对角线长为8,可利用勾股定理,求得另一菱形的对角线长,继而求得答案.【详解】解:如图,∵菱形ABCD中,BD=8,AB=5,∴AC⊥BD,OB=BD=4,∴OA==3,∴AC=2OA=6,∴这个菱形的面积为:AC•BD=×6×8=1.故选B.【点睛】此题考查了菱形的性质以及勾股定理.注意菱形的面积等于其对角线积的一半.2、C【解析】

根据勾股定理求出BC长,由正方形的性质可得对角线长.【详解】解:由正方形ABCD可知:AB=BC,∠ABC=在直角三角形EBC中,根据勾股定理得:BC2=E在直角三角形ABC中,根据勾股定理得:AC=A所以这块场地对角线长为40.故选:C【点睛】本题考查了勾股定理,灵活应用勾股定理求线段长是解题的关键.3、C【解析】

设纯电动汽车每千米所需费用为x元,则燃油汽车每千米所需费用为(x+0.54)元,根据路程=总费用÷每千米所需费用结合路程相等,即可得出关于x的分式方程,此题得解.【详解】解:设纯电动汽车每千米所需费用为x元,则燃油汽车每千米所需费用为(x+0.54)元,根据题意得:.故选:C.【点睛】本题考查了由实际问题抽象出分式方程以及函数的图象,找准等量关系,正确列出分式方程是解题的关键.4、D【解析】

根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定答案.【详解】显然A、B、C选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;D选项对于x取值时,y都有3个或2个值与之相对应,则y不是x的函数;故选D.【点睛】本题主要考察函数的定义,属于基础题,熟记函数的定义是解题的关键.5、B【解析】

依次将各选项坐标的横坐标值代入函数计算,若计算结果与其纵坐标值相同,则在函数图像上,反之则不在.【详解】A:当时,,与其纵坐标值相同,该点在该函数图象上;B:当时,,与其纵坐标值不同,该点不在该函数图象上;C:当时,,与其纵坐标值相同,该点在该函数图象上;D:当时,,与其纵坐标值相同,该点在该函数图象上;故选:B.【点睛】本题主要考查了二次根式的计算与函数图像上点的性质,熟练掌握相关概念是解题关键.6、A【解析】

根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据定义进行分析即可.【详解】解:A、既是轴对称图形又是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.【点睛】此题主要考查了中心对称图形和轴对称图形,关键是掌握中心对称图形和轴对称图形的定义.7、D【解析】

根据不等式的性质,对选项进行求解即可.【详解】解:、,故成立,不合题意;、,故成立,不合题意;、,故成立,不合题意;、,故不成立,符合题意.故选:.【点睛】本题考查不等式,熟练掌不等式的性质及运算法则是解题关键.8、B【解析】

根据分母为零无意义,可得答案.【详解】解:由题意,得,解得,故选:B.【点睛】本题考查了函数自变量的取值范围,利用分母不等于零得出不等式是解题关键.9、C【解析】

连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】解:连接AD,

∵△ABC是等腰三角形,点D是BC边的中点,

∴AD⊥BC,

∴S△ABC=BC•AD=×4×AD=16,解得AD=8,

∵EF是线段AC的垂直平分线,

∴点C关于直线EF的对称点为点A,

∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD故选:C.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.10、C【解析】

利用矩形对角线的性质得到OA=OB.结合∠AOD=120°知道∠AOB=60°,则△AOB是等边三角形;最后在直角△ABC中,利用勾股定理来求BC的长度即可.【详解】解:如图,矩形的对角线,交于点,,.又,,是等边三角形,.在直角中,,,,.故选:.【点睛】本题考查了矩形的性质和等边三角形的性质和判定的应用,解此题的关键是求出OA、OB的长,题目比较典型,是一道比较好的题目.11、B【解析】

将点A的横坐标减4,纵坐标不变,即可得出点A′的坐标.【详解】解:将点A(3,3)向左平移4个单位长度得点A′,则点A′的坐标是(3-4,3),即(-1,3),

故选:B.【点睛】此题考查坐标与图形变化-平移,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.12、D【解析】

根据k值的正负,判断一次函数和反比例函数必过的象限,二者一致的即为正确答案.【详解】在函数与中,当k>0时,图象都应过一、三象限;当k<0时,图象都应过二、四象限,故选:D.【点睛】本题考查了一次函数与反比例函数的图象和性质,掌握一次函数和反比例函数的图象和性质是解题的关键.二、填空题(每题4分,共24分)13、41【解析】

证明△ABN≌△ADN,求得AD=AB=10,BN=DN,继而可和CD长,结合M为BC的中点判断MN是△BDC的中位线,从而得出CD长,再根据三角形周长公式进行计算即可得.【详解】在△ABN和△ADN中,,∴△ABN≌△ADN,∴BN=DN,AD=AB=10,又∵点M是BC中点,∴MN是△BDC的中位线,∴CD=2MN=6,故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41,故答案为:41.【点睛】本题考查了全等三角形的判定与性质,三角形的中位线定理,等腰三角形的判定等,注意培养自己的敏感性,一般出现高、角平分线重合的情况,都需要找到等腰三角形.14、(-2,2)【解析】

由题意根据点向左平移横坐标减,向上平移纵坐标加求解即可.【详解】解:∵点A(1,-3)向左平移3个单位长度,再向上平移5个单位长度后得到点A′,∴点A′的横坐标为1-3=-2,纵坐标为-3+5=2,∴A′的坐标为(-2,2).故答案为:(-2,2).【点睛】本题考查坐标与图形变化-平移,注意掌握平移时点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.15、【解析】

如图,作交于,连接、、作于,首先证明,因为,即可推出当、、共线时,的值最小,最小值.【详解】如图,作交于,连接、、作于.是等腰直角三角形,,,,,,,,,,,,,,当、、共线时,的值最小,最小值,在中,,,在中,.故答案为:.【点睛】本题考查了四边形的动点问题,掌握当、、共线时,的值最小,最小值是解题的关键.16、15【解析】

根据题意,先将正方体展开,再根据两点之间线段最短求解.【详解】将上面翻折起来,将右侧面展开,如图,连接,依题意得:,,∴.故答案:15【点睛】此题考查最短路径,将正方体展开,根据两点之间线段最短,运用勾股定理是解题关键.17、y=【解析】

先根据条件算出注满容器还需注水200m3,根据注水时间=容积÷注水速度,据此列出函数式即可.【详解】解:容积300m3,原有水100m3,还需注水200m3,由题意得:y=.【点睛】本题考查了反比例函数的实际应用,理清实际问题中的等量关系是解题的关键.18、14或1【解析】由平行四边形ABCD推出∠AEB=∠CBE,由已知得到∠ABE=∠CBE,推出AB=AE,分两种情况(1)当AE=2时,求出AB的长;(2)当AE=3时,求出AB的长,进一步求出平行四边形的周长.

解:∵四边形ABCD是平行四边形,

∴AD=BC,AB=CD,AD∥BC,

∴∠AEB=∠CBE,

∵BE平分∠ABC,

∴∠ABE=∠CBE,

∴∠ABE=∠AEB,

∴AB=AE,

∵∠ABC的平分线将AD边分成的两部分的长分别为2和3两部分,当AE=2时,则平行四边形ABCD的周长是14;

(2)当AE=3时,则平行四边形ABCD的周长是1;

故答案为14或1.

“点睛”此题考查了平行四边形的性质:平行四边形的对边相等且平行.注意当有平行线和角平分线出现时,会有等腰三角形出现,解题时还要注意分类讨论思想的应用.

三、解答题(共78分)19、(2)B(-3,12),C(-1,12),D(-1,32【解析】试题分析:(2)由矩形的性质即可得出结论;(2)根据平移的性质将矩形ABCD向右平移m个单位,得到A′(-3+m,),C(-1+m,12),由点A′,C′在反比例函数y=kx(x>0)的图象上,得到方程试题解析:(2)∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=2,∵A(-3,32),AD∥x轴,∴B(-3,12),C(-1,12),D(-1(2)∵将矩形ABCD向右平移m个单位,∴A′(-3+m,),C(-1+m,12),∵点A′,C′在反比例函数y=kx(x>0)的图象上,∴32(-3+m)=12(-1+m)考点:2.反比例函数综合题;2.坐标与图形变化-平移.20、详见解析【解析】

首先根据平行四边形的性质,得出,,,,进而得出,,即可判定.【详解】∵四边形是平行四边形,∴,∵四边形是平行四边形,∴,∴,∴四边形是平行四边形【点睛】此题主要考查平行四边形的性质和判定,熟练掌握,即可解题.21、a-b【解析】

利用分式的基本性质化简即可.【详解】===.【点睛】此题考查了分式的化简,用到的知识点是分式的基本性质、完全平方公式.22、(1)线段AB的中点坐标是1,1;(2)点D的坐标为6,0;(3)符合条件的D点坐标为D2,2或D【解析】

(1)直接套用中点坐标公式,即可得出中点坐标;(2)根据AC、BD的中点重合,可得出xA+x(3)当AB为该平行四边形一边时,此时CD∥AB,分别求出以AD、BC为对角线时,以AC、BD为对角线的情况可得出点D坐标.【详解】解:(1)AB中点坐标为-1+32,4-22,即AB的中点坐标是:((2)根据平行四边形的性质:对角线互相平分,可知AC、BD的中点重合,由中点坐标公式可得:xA+代入数据,得:1+52=解得:xD=6,yD=0,所以点(3)当AB为该平行四边形一边时,则CD//AB,对角线为AD、BC或AC、BD;故可得:xA+xD2=x故可得yC-y∵y∴yD代入到y=12x+1中,可得D综上,符合条件的D点坐标为D2,2或D【点睛】本题考查了一次函数的综合题,涉及了中点坐标公式、平行四边形的性质,综合性较强.23、(1)证明见解析;(1)1.【解析】

(1)根据平行四边形的判定和菱形的判定证明即可;(1)根据菱形的性质和勾股定理解答即可.【详解】(1)∵AB∥DC,∴∠CAB=∠ACD.∵AC平分∠BAD,∴∠CAB=∠CAD.∴∠CAD=∠ACD,∴DA=DC.∵AB=AD,∴AB=DC.∴四边形ABCD是平行四边形.∵AB=AD,∴四边形ABCD是菱形;(1)∵四边形ABCD是菱形,∠DAB=60°,∴∠OAB=30,∠AOB=90°.∵AB=4,∴OB=1,AO=OC=1.∵CE∥DB,∴四边形DBEC是平行四边形.∴CE=DB=4,∠ACE=90°.∴.【点睛】本题考查了平行四边形的性质与判定、全等三角形的判定与性质、菱形的判定;熟练掌握平行四边形的性质,证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论