版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省台州市椒江区第五中学2024年八年级下册数学期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.矩形不具备的性质是()A.对角线相等 B.四条边一定相等C.是轴对称图形 D.是中心对称图形2.如图,某班数学兴趣小组利用数学知识测量建筑物DEFC的高度.他们从点A出发沿着坡度为i=1:2.4的斜坡AB步行26米到达点B处,此时测得建筑物顶端C的仰角α=35°,建筑物底端D的俯角β=30°.若AD为水平的地面,则此建筑物的高度CD约为()米.(参考数据:≈1.7,tan35°≈0.7)A.23.1 B.21.9 C.27.5 D.303.下列x的值中,能使不等式成立的是()A. B.2 C.3 D.4.甲、乙两人分别骑自行车和摩托车从A地到B地,两人所行驶的路程与时间的关系如图所示,下面的四个说法:甲比乙早出发了3小时;乙比甲早到3小时;甲、乙的速度比是5:6;乙出发2小时追上了甲.其中正确的个数是A.1个 B.2个 C.3个 D.4个5.如图,在ΔABC中,AC=6,BC=8,AB=10,P是AB边上的动点,PE⊥AC,PF⊥BC,则EF的最小值为()A.125 B.245 C.56.直线y=x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(-3,0) B.(-6,0) C.(-,0) D.(-,0)7.在ΔABC中,∠A,∠B,∠C的对边分别是a,b,c,下列条件中,不能判定ΔABC是直角三角形的是()A.∠A+∠B=90°C.a=1,b=3,c=10 D.8.如图,在的方格纸中,两点在格点上,线段绕某点逆时针旋转角后得到线段,点与对应,则角的大小为()A. B. C. D.9.如图,设甲图中阴影部分的面积为S1,乙图中阴影部分的面积为S2,k=(a>b>0),则有()A.k>2 B.1<k<2 C.<k<1 D.0<k<10.如图,四边形中,与不平行,分别是的中点,,,则的长不可能是()A.1.5 B.2 C.2.5 D.311.某青年排球队12名队员的年龄情况如下表:年龄1819202122人数1xy22其中x>y,中位数为20,则这个队队员年龄的众数是()A.3 B.4 C.19 D.2012.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(A.(14,-1) B.(14,0) C.(二、填空题(每题4分,共24分)13.有5张正面分别标有数字-2,0,2,4,6的不透明卡片,它们除数不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,则使关于的不等式组有解的概率为____________;14.已知直线与反比例函数的图象交于A、B两点,当线段AB的长最小时,以AB为斜边作等腰直角三角形△ABC,则点C的坐标是__________.15.一组数据为0,1,2,3,4,则这组数据的方差是_____.16.某校对n名学生的体育成绩统计如图所示,则n=_____人.17.某公司招聘一名人员,应聘者小王参加面试和笔试,成绩(100分制)如表所示:面试笔试成绩评委1评委2评委392889086如果面试平均成绩与笔试成绩按6:4的比确定,请计算出小王的最终成绩_____.18.______.三、解答题(共78分)19.(8分)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.20.(8分)小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?21.(8分)如图,矩形中,,对角线、交于点,的平分线分别交、于点、,连接.(l)求的度数;(2)若,求的面积;(3)求.22.(10分)已知:如图,在□ABCD中,点M、N分别是AB、CD的中点.求证:DM=BN.23.(10分)如图,在中,点对角线上,且,连接。求证:(1);(2)四边形是平行四边形。24.(10分)先化简÷(-),然后再从-2<x≤2的范围内选取一个合适的x的整数值代入求值25.(12分)如图,在平面直角坐标系中,直线y1=x+1与双曲线(k>0)相交于点A、B,已知点A坐标(2,m).(1)求k的值;(2)求点B的坐标,并观察图象,写出当时,x的取值范围.26.我市开展“美丽自贡,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;(2)扇形图中的“1.5小时”部分圆心角是多少度?(3)求抽查的学生劳动时间的众数、中位数.
参考答案一、选择题(每题4分,共48分)1、B【解析】
根据矩形的性质即可判断.【详解】解:矩形的对边相等,四条边不一定都相等,B选项错误,由矩形的性质可知选项A、C、D正确.故选:B【点睛】本题考查了矩形的性质,准确理解并掌握矩形的性质是解题的关键.2、B【解析】
过点B作BN⊥AD,BM⊥DC垂足分别为N,M,设BN=x,则AN=2.4x,在Rt△ABN中,根据勾股定理求出x的值,从而得到BN和DM的值,然后分别在Rt△BDM和Rt△BCM中求出BM和CM的值,即可求出答案.【详解】如图所示:过点B作BN⊥AD,BM⊥DC垂足分别为N,M,∵i=1:2.4,AB=26m,∴设BN=x,则AN=2.4x,∴AB==2.6x,则2.6x=26,解得:x=10,故BN=DM=10m,则tan30°===,解得:BM=10,则tan35°===0.7,解得:CM≈11.9(m),故DC=MC+DM=11.9+10=21.9(m).故选B.【点睛】本题考查了解直角三角形的应用,如果没有直角三角形则作垂线构造直角三角形,然后利用直角三角形的边角关系来解决问题,有时还会用到勾股定理,相似三角形等知识才能解决问题.3、A【解析】
根据不等式的解集的概念即可求出答案.【详解】解:不等式x-1<1的解集为:x<1.
所以能使不等式x-1<1成立的是-2.
故选:A.【点睛】本题考查不等式的解集,解题的关键是正确理解不等式的解的概念,本题属于基础题型.4、B【解析】分析:根据函数图象中所提供的信息进行分析判断即可.详解:(1)由图中信息可知,乙是在甲出发3小时后出发的,所以结论①正确;(2)由图中信息可知,甲是在乙到达终点3小时后到达的,所以结论②正确;(3)由题中信息可得:V甲=80÷8=10(km/小时)V乙=80÷2=40(km/小时),由此可得:V甲:V乙=1:4,所以结论③错误;(4)由图中信息和(3)中所求甲和乙的速度易得,乙出发后1小时追上甲,所以结论④不成立.综上所述,4个结论中正确的有2个.故选B.点睛:读懂题意,能够从函数图象中获取相关数据信息是解答本题的关键.5、B【解析】
先由矩形的判定定理推知四边形PECF是矩形;连接PC,则PC=EF,所以要使EF,即PC最短,只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值.【详解】如图,连接PC.∵在△ABC中,AC=6,BC=8,AB=10,∴AB2=AC2+BC2,∴∠C=90°.又∵PE⊥AC于点E,PF⊥BC于点F.∴∠CEP=∠CFP=90°,∴四边形PECF是矩形.∴PC=EF.∴当PC最小时,EF也最小,即当PC⊥AB时,PC最小,∵12BC•AC=12AB•PC,即PC=∴线段EF长的最小值为245故选B.【点睛】本题考查了勾股定理、矩形的判定与性质、垂线段最短.利用“两点之间垂线段最短”找出PC⊥AB时,PC取最小值是解答此题的关键.6、C【解析】
作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.直线y=x+4与x轴、y轴的交点坐标为A(﹣6,0)和点B(0,4),因点C、D分别为线段AB、OB的中点,可得点C(﹣3,1),点D(0,1).再由点D′和点D关于x轴对称,可知点D′的坐标为(0,﹣1).设直线CD′的解析式为y=kx+b,直线CD′过点C(﹣3,1),D′(0,﹣1),所以,解得:,即可得直线CD′的解析式为y=﹣x﹣1.令y=﹣x﹣1中y=0,则0=﹣x﹣1,解得:x=﹣,所以点P的坐标为(﹣,0).故答案选C.考点:一次函数图象上点的坐标特征;轴对称-最短路线问题.7、D【解析】
根据三角形内角和定理以及直角三角形的性质即可求出答案.【详解】A.∵∠A+∠B=90°,∠A+∠B+∠C=180°,∴∠C=90°B.∠A+∠B=∠C,∠A+∠B+∠C=180°,∴∠C=90°,∴C.∵12+32=D.设a=1,b=2,c=2,∵12+22≠22,∴△ABC不是直角三角形,故D不能判断.故选:D.【点睛】本题考查了三角形的内角和,勾股定理的逆定理,解题的关键是熟练运用三角形的性质,本题属于基础题型.8、C【解析】
如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′,∠AOA′即为旋转角.【详解】解:如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′∠AOA′即为旋转角,∴旋转角为90°故选:C.【点睛】考查了旋转的性质,解题的关键是能够根据题意确定旋转中心的知识,难度不大.9、B【解析】
根据正方形和矩形的面积公式分别表示出两个阴影部分面积,即可求出所求.【详解】由题意得:甲图中阴影部分的面积为,乙图中阴影部分的面积为故选:B.【点睛】本题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.10、D【解析】
连接BD,取BD的中点G,连接MG、NG,根据三角形的中位线平行于第三边并且等于第三边的一半可得AB=2MG,DC=2NG,再根据三角形的任意两边之和大于第三边得出MN<(AB+DC),即可得出结果.【详解】解:如图,连接BD,取BD的中点G,连接MG、NG,∵点M,N分别是AD、BC的中点,∴MG是△ABD的中位线,NG是△BCD的中位线,∴AB=2MG,DC=2NG,∴AB+DC=2(MG+NG),由三角形的三边关系,MG+NG>MN,∴AB+DC>2MN,∴MN<(AB+DC),∴MN<3;故选:D.【点睛】本题考查了三角形的中位线定理,三角形的三边关系;根据不等关系考虑作辅助线,构造成以MN为一边的三角形是解题的关键.11、C【解析】
先求出x+y=7,再根据x>y,由众数的定义即可求出这个队员年龄的众数.【详解】解:依题意有x+y=12−1−2−2=7,∴y=7-x∵x>y,∴x>7-x∴∵x为整数∴x≥4,∴这个队队员年龄的众数是1.故选C.【点睛】本题主要考查了中位数,众数,掌握中位数,众数是解题的关键.12、D【解析】
从图中可以看出横坐标为1的有一个点,横坐标为2的有2个点,横坐标为3的有3个点,…依此类推横坐标为n的有n个点.题目要求写出第100个点的坐标,我们可以通过加法计算算出第100个点位于第几列第几行,然后对应得出坐标规律,将行列数代入规律式.【详解】在横坐标上,第一列有一个点,第二列有2个点…第n个有n个点,并且奇数列点数对称而偶数列点数y轴上方比下方多一个,所以奇数列的坐标为n,n-1偶数列的坐标为n,n由加法推算可得到第100个点位于第14列自上而下第六行.代入上式得(14,142-5)故选D.【点睛】本题是一道找规律题,主要考查了点的规律.培养学生对坐平面直角坐标系的熟练运用能力是解题的关键.二、填空题(每题4分,共24分)13、【解析】首先确定不等式的解,然后根据有确定a的取值范围,再利用概率公式求解即可.解:解关于x不等式得,∵关于x不等式有实数解,∴解得a<1.∴使关于x不等式有实数解的概率为.故答案为“点睛”本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,期中事件A出现m种结果,那么事件A的概率P(A)=.14、或【解析】
联立方程组,求出A、B的坐标,分别用k表示,然后根据等腰直角三角形的两直角边相等求出k的值,即可求出结果.【详解】由题可得,可得,根据△ABC是等腰直角三角形可得:,解得,当k=1时,点C的坐标为,当k=-1时,点C的坐标为,故答案为或.【点睛】本题主要考查了一次函数与反比例函数的综合应用,利用好等腰直角三角形的条件很重要.15、1.【解析】
先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.【详解】这组数据的平均数是:,则方差;故答案为:1.【点睛】此题考查方差,解题关键在于掌握运算法则16、1【解析】
根据统计图中的数据,可以求得n的值,本题得以解决.【详解】解:由统计图可得,n=20+30+10=1(人),故答案为:1.【点睛】本题考查折线统计图,解答本题的关键是明确题意,提取统计图中的有效信息解答.17、89.6分【解析】
将面试所有的成绩加起来再除以3即可得小王面试平均成绩,再根据加权平均数的含义和求法,求出小王的最终成绩即可.【详解】∵面试的平均成绩为=88(分),∴小王的最终成绩为=89.6(分),故答案为89.6分.【点睛】此题主要考查了加权平均数的含义和求法,要熟练掌握,解答此题的关键是要明确:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.同时考查了算术平均数的含义和求法,要熟练掌握,解答此题的关键是要明确:算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数.18、1【解析】
利用平方差公式即可计算.【详解】原式.故答案为:1.【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.三、解答题(共78分)19、(1)见解析;(2)见解析.【解析】试题分析:(1)由矩形可得∠ABD=∠CDB,结合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB,即可知BE∥DF,根据AD∥BC即可得证;(2)当∠ABE=30°时,四边形BEDF是菱形,由角平分线知∠ABD=2∠ABE=60°、∠EBD=∠ABE=30°,结合∠A=90°可得∠EDB=∠EBD=30°,即EB=ED,即可得证.试题解析:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.考点:矩形的性质;平行四边形的判定与性质;菱形的判定;探究型.20、小明至少答对18道题才能获得奖品.【解析】试题分析:设小明答对x道题,根据“共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品”,列出不等式,解不等式即可.试题解析:设小明答对x道题,根据题意得,6x-2(25-x)>90解这个不等式得,,∵x为非负整数∴x至少为18答:小明至少答对18道题才能获得奖品.考点:一元一次不等式的应用.21、(1)75°;(2);(3)【解析】
(1)由矩形的性质可得AB∥CD,AO=CO=BO=DO,由角平分线的性质和平行线的性质可求BC=BE=BO,即可求解;
(2)过点H作FH⊥BC于F,由直角三角形的性质可得FH=BF,BC=BF+BF=1,可求BH的长,由三角形面积公式可求△BCH的面积;
(3)过点C作CN⊥BO于N,由直角三角形的性质可求BC=BF+BF=BO=BE,OH=OB-BH=BF-BF,CN=BC=BF,即可求解.【详解】解:(1)∵四边形ABCD是矩形
∴AB∥CD,AO=CO=BO=DO,
∴∠DCE=∠BEC,
∵CE平分∠BCD
∴∠BCE=∠DCE=45°,
∴∠BCE=∠BEC=45°
∴BE=BC
∵∠BAC=30°,AO=BO=CO
∴∠BOC=60°,∠OBA=30°
∵∠BOC=60°,BO=CO
∴△BOC是等边三角形
∴BC=BO=BE,且∠OBA=30°
∴∠BOE=75°
(2)如图,过点H作FH⊥BC于F,
∵△BOC是等边三角形
∴∠FBH=60°,FH⊥BC
∴BH=2BF,FH=BF,
∵∠BCE=45°,FH⊥BC
∴CF=FH=BF
∴BC=BF+BF=1
∴BF=,∴FH=,∴S△BCH=×BC×FH=;(3)如图,过点C作CN⊥BO于N,
∵△BOC是等边三角形
∴∠FBH=60°,FH⊥BC
∴BH=2BF,FH=BF,
∵∠BCE=45°,FH⊥BC
∴CF=FH=BF
∴BC=BF+BF=BO=BE,
∴OH=OB-BH=BF-BF
∵∠CBN=60°,CN⊥BO∴,∴,∴.【点睛】本题考查矩形的性质、等边三角形的判定与性质、等腰三角形的判定与性质;熟练掌握矩形的性质,证明△AOB是等边三角形是解决问题的关键.22、见解析【解析】
根据平行四边形的性质得到AB=CD,AD=BC,∠A=∠C.,利用点M、N分别是AB、CD的中点证得,再证明△ADM≌△CBN即可得到结论.【详解】证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠A=∠C.又∵点M、N分别是AB、CD的中点,∴∴∴△ADM≌△CBN(SAS)∴DM=BN.【点睛】此题考查平行四边形的性质,全等三角形的判定与性质,线段中点的性质,根据题中的已知条件确定正确全等三角形的思路是解题的关键.23、(1)见解析;(2)四边形是平行四边形,见解析.【解析】
(1)根据全等三角形的判定方法SAS,判断出△ADE≌△CBF.
(2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF是平行四边形即可.【详解】证明:(1)∵四边形是平行四边形,∴,∴,在和中,∴(SAS);(2)由(1)可得,∴,∴,∴,∴,又∵,∴四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年办公照明项目筹资方案
- 【电信终端产业协会】2024年终端智能化分级研究报告
- 国际物流题库(含参考答案)
- 养老院老人生活娱乐活动组织人员行为规范制度
- 养老院老人健康档案管理制度
- 《动物简笔画的步骤》课件
- 《电子技术基础绪论》课件
- 2024年土地承包经营权流转与农业品牌建设合同范本3篇
- 提成协议书(2篇)
- 2024年版:高级管理职位聘任协议
- 企业EHS风险管理基础智慧树知到答案章节测试2023年华东理工大学
- 中国2型糖尿病防治指南(2020年版)
- 小学数学试卷模板
- 全国运动员代表资格协议书
- 制氢操作规程6篇
- 关于友情的英语ppt
- 2023全国日语高考答题卡word版
- 初中数学浙教版七年级上册第3章实数3.4实数的运算 全国一等奖
- GB/T 8488-2001耐酸砖
- GB/T 4213-2008气动调节阀
- GB/T 23703.2-2010知识管理第2部分:术语
评论
0/150
提交评论