




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省东莞市中学堂镇六校2024届数学八年级下册期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.某校将举办一场“中国汉字听写大赛”,要求每班推选一名同学参加比赛,为此,初二(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.3,乙的成绩的方差是0.4,根据以上数据,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定2.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A.①,② B.①,④ C.③,④ D.②,③3.下列各式中,能用完全平方公式分解的个数为()
①;②;③;④;⑤.A.1个 B.2个 C.3个 D.4个4.下列方程中,是关于x的一元二次方程的是().A. B. C. D.5.已知y是x的正比例函数,且函数图象经过点,则在此正比例函数图象上的点是()A. B. C. D.6.使用同一种规格的下列地砖,不能进行平面镶嵌的是(
)A.正三角形地砖B.正四边形地砖C.正五边形地砖D.正六边形地砖7.菱形具有而平行四边形不具有的性质是()A.对角线互相垂直 B.对边平行C.对边相等 D.对角线互相平分8.在下列式子中,x可以取1和2的是()A. B. C. D.9.如图,沿直线边BC所在的直线向右平移得到,下列结论中不一定正确的是A. B.C. D.10.由线段a、b、c组成的三角形不是直角三角形的是A.,, B.,,C.,, D.,,11.如图,一次图数y=﹣x+3与一次函数y=2x+m图象交于点(2,n),则关于x的不等式组的解集为()A.x>﹣2 B.x<3 C.﹣2<x<3 D.0<x<312.若y关于x的函数y=(m-2)x+n是正比例函数,则m,n应满足的条件是()A.m≠2且n=0 B.m=2且n=0 C.m≠2 D.n=0二、填空题(每题4分,共24分)13.若方程的解是正数,则m的取值范围_____.14.如图,在平面直角坐标系中,一次函数y=kx+b和函数y=4xx>0的图象交于A、B两点.利用函数图象直接写出不等式415.如图,在坐标系中,有,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知是由旋转得到的.请写出旋转中心的坐标是____,旋转角是____度.16.若关于x的方程的解为负数,则a的取值范围为______.17.如图所示:分别以直角三角形三边为边向外作三个正方形,其面积分别用、、表示,若,,则的长为__________.18.如图,已知二次函数y=ax2+bx+c的图象经过点A(3,0),对称轴为直线x=1,则点B的坐标是_____.三、解答题(共78分)19.(8分)矩形中,对角线、交于点,点、、分别为、、的中点.(1)求证:四边形为菱形;(2)若,,求四边形的面积.20.(8分)直线与轴、轴分别交于两点,以为边向外作正方形,对角线交于点,则过两点的直线的解析式是__________.21.(8分)已知:关于x的方程x2(1)不解方程,判断方程的根的情况;(2)若△ABC为等腰三角形,腰BC=5,另外两条边是方程x2-4mx+4m222.(10分)如图,每个小正方形的边长为1,四边形的每个顶点都在格点上,且,.(1)请在图中补齐四边形,并求其面积;(2)判断是直角吗?请说明理由23.(10分)如图,在直角坐标系中,已知点O,A的坐标分别为(0,0),(﹣3,﹣2).(1)点B的坐标是,点B与点A的位置关系是.现将点B,点A都向右平移5个单位长度分别得到对应点C和D,顺次连接点A,B,C,D,画出四边形ABCD;(2)横、纵坐标都是整数的点成为整数点,在四边形ABCD内部(不包括边界)的整数点M使S△ABM=8,请直接写出所有点M的可能坐标;(3)若一条经过点(0,﹣4)的直线把四边形ABCD的面积等分,则这条直线的表达式是,并在图中画出这条直线.24.(10分)如图所示,在ΔABC中,点D在BC上,CF⊥AD于F,且CF平分∠ACB,AE=EB.求证:EF=125.(12分)“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调査了部分学生,调查结果分为五种:A非常了解,B比较了解,C基本了解,D不太了解,E完全不知.实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图请根据以上信息,解答下列问题:(1)本次共调查了名学生,扇形统计图中D所对应扇形的圆心角为度;(2)把这幅条形统计图补充完整(画图后请标注相应的数据);(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有名.26.如图,在平行四边形ABCD中,E、F分别是AD、BC的中点,连接AF、BE交于点G,连接CE、DF交于点H.(1)求证:四边形EGFH为平行四边形;(2)当=时,四边形EGFH为矩形.
参考答案一、选择题(每题4分,共48分)1、A【解析】因为,,所以甲的成绩比乙的成绩稳定.2、D【解析】
确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【详解】只有②③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点,∴带②③两块碎玻璃,就可以确定平行四边形的大小.故选D.【点睛】本题考查平行四边形的定义以及性质,解题的关键是理解如何确定平行四边形的四个顶点,四个顶点的位置确定了,平行四边形的大小就确定了,属于中考常考题型.3、B【解析】
分别利用完全平方公式分解因式得出即可【详解】①=,符合题意;②;不能用完全平方公式分解,不符合题意③;不能用完全平方公式分解,不符合题意④=-,符合题意;⑤,不可以用完全平方公式分解,不符合题意故选:B.【点睛】本题考查因式分解,熟练掌握运算法则是解题关键.4、D【解析】
只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断.【详解】A、是关于x的一元一次方程,不符合题意;B、为二元二次方程,不符合题意;C、是分式方程,不符合题意;D、只含有一个未知数,未知数的最高次数是2,二次项系数不为1,是一元二次方程,符合题意;故选D.【点睛】本题考查了一元二次方程的定义,一元二次方程只含有一个未知数,未知数的最高次数是2,为整式方程;特别注意二次项系数不为1.5、D【解析】
利用待定系数法可求出正比例函数解析式,再利用一次函数图象上点的坐标特征可找出点(-4,6)在此正比例函数图象上,此题得解.【详解】解:设正比例函数解析式为y=kx(k≠0).∵正比例函数图象经过点(4,-6),∴-6=4k,∴.∵当x=-4时,y=x=6,∴点(-4,6)在此正比例函数图象上.故选D.【点睛】本题考查了待定系数法求正比例函数解析式以及一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.6、C【解析】试题解析:A、正三角形的每个内角是60°,能整除360°,能密铺,故A不符合题意;
B、正四边形每个内角是90°,能整除360°,能密铺,故B不符合题意;
C、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能密铺,故C符合题意;
D、正六边形每个内角是120°,能整除360°,能密铺,故D不符合题意.
故选C.7、A【解析】
根据菱形及平行四边形的性质,结合选项即可得出答案.【详解】A、对角线互相垂直是菱形具有,平行四边形不具有的性质,故本选项正确;B、对边平行是菱形和平行四边形都具有的性质,故本选项错误;C、对边相等是菱形和平行四边形都具有的性质,故本选项错误;D、对角线互相平分是菱形和平行四边形都具有的性质,故本选项错误.故选A.【点睛】此题考查了平行四边形及菱形的性质,属于基础题,关键是熟练掌握特殊图形的基本性质.8、B【解析】
根据分式和二次根式有意义的条件即可求出答.【详解】解:A.x﹣1≠0,所以x≠1,故A不可以取1B.x﹣1≥0,所以x≥1,故B可以取1和2C.x﹣2≥0,所以x≥2,故C不可以取1D.x﹣2≠0,所以x≠2,故D不可以取2故选:B.【点睛】本题考查的是分式和二次根式有意义的条件,熟练掌握二者是解题的关键.9、C【解析】
由平移的性质,结合图形,对选项进行一一分析,选择正确答案.【详解】沿直线边BC所在的直线向右平移得到,,,,,,,,但不能得出,故选C.【点睛】本题考查了平移的基本性质:平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.10、D【解析】
A、72+242=252,符合勾股定理的逆定理,是直角三角形;
B、42+52=()2,符合勾股定理的逆定理,是直角三角形;
C、12+()2=()2,符合勾股定理的逆定理,是直角三角形;
D、()2+()2≠()2,不符合勾股定理的逆定理,不是直角三角形.
故选D.11、C【解析】
先求出直线y=﹣x+1与x轴的交点坐标,然后根据函数特征,写出在x轴上,直线y=2x+m在直线y=﹣x+1上方所对应的自变量的范围.【详解】解:直线y=﹣x+1与x轴的交点坐标为(1,0),所以不等式组的解集为﹣2<x<1.故选:C.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.12、A【解析】试题解析:若y关于x的函数是正比例函数,解得:故选A.二、填空题(每题4分,共24分)13、m>-2且m≠0【解析】分析:本题解出分式方程的解,根据题意解为正数并且解不能等于2,列出关于m的取值范围.解析:解方程解为正数,∴且m≠0.故答案为m>-2且m≠014、1<x<4【解析】
不等式4x<kx+b(x>0)的解集实际上是反比例函数值小于一次函数值的自变量【详解】解:不等式4x<kx+b(x>0)的解集实际上是反比例函数值小于一次函数值的自变量x的取值范围,根据图象得:1<x<1.
故答案为:1<x<【点睛】本题考查一次函数、反比例函数的图象和性质,理清不等式的解集与两个函数的交点坐标之间的关系是解决问题的关键.15、1【解析】
先根据平面直角坐标系得出点的坐标,从而可得的垂直平分线,再利用待定系数法分别求出直线的解析式,从而可得其垂直平分线的解析式,联立两条垂直平分线即可求出旋转中心的坐标,然后根据旋转中心可得出旋转角为,最后利用勾股定理的逆定理即可得求出旋转角的度数.【详解】由图可知,点的坐标为,点的坐标为点关于y轴对称y轴垂直平分,即线段的垂直平分线所在直线的解析式为设直线的解析式为将点代入得:,解得则直线的解析式为设垂直平分线所在直线的解析式为的中点坐标为,即将点代入得:,解得则垂直平分线所在直线的解析式为联立,解得则旋转中心的坐标是由此可知,旋转角为是等腰直角三角形,且故答案为:,1.【点睛】本题考查了利用待定系数法求一次函数的解析式、旋转的定义、勾股定理的逆定理等知识点,掌握确定旋转中心的方法是解题关键.16、且【解析】
当x≠﹣1时,解出x含a的表达式,令其小于零且不等于-1,直接解出即可.【详解】当x≠﹣1时,1x-a=0,x=<0,解得a<0,且,解得a≠﹣1.综上所述且.故答案为:且.【点睛】本题考查解分式方程和解不等式,关键在于牢记分式有意义的条件,熟练掌握解方程的步骤.17、1.【解析】
先设Rt△ABC的三边分别为a、b、c,再分别用a、b、c表示S1、S2、S3的值,由勾股定理即可得出S2的值.【详解】解:设Rt△ABC的三边分别为a、b、c,∴S1=a2=25,S2=b2,S3=c2=9,∵△ABC是直角三角形,∴c2+b2=a2,即S3+S2=S1,∴S2=S1-S3=25-9=16,∴BC=1,故答案为:1.【点睛】本题考查的是勾股定理的应用及正方形的面积公式,熟知勾股定理是解答此题的关键.18、(﹣1,0).【解析】
根据点B与点A关于直线x=1对称确定点B的坐标即可.【详解】∵二次函数y=ax2+bx+c的图象与x轴交于A,B两点,∴点A与点B关于直线x=1对称,而对称轴是直线x=1,点A的坐标为(3,0),∴点B的坐标是(﹣1,0).故答案为(﹣1,0).【点睛】本题考查了二次函数的对称性,熟知二次函数的图象关于对称轴对称是解决问题的关键.三、解答题(共78分)19、(1)见解析;(2).【解析】
(1)根据三角形的中位线定理即可证明;(2)根据菱形的面积公式即可求解.【详解】(1)∵四边形是矩形,∴,又∵点、、分别为、、的中点,∴,,且,同理,,故,∴四边形为菱形;(2)连接、,则,且,,且,由(1)知,四边形为菱形,故.【点睛】此题主要考查菱形的判定与面积求解,解题的关键是熟知菱形的判定定理.20、【解析】
分别过点E作EF⊥x轴于F,过点E作EG⊥y轴于点G,再证明△BEG≌△AEF,得出EG=EF,从而可得出结论.【详解】解:过点E作EF⊥x轴于F,过点E作EG⊥y轴于点G,∵四边形ABCD为正方形,∴BE=AE,且∠AEB=90°,∴∠BEG+∠AEG=∠AEG+∠AEF,∴∠BEG=∠AEF,又∠BGE=∠AFE=90°,∴△BEG≌△AEF(ASA),∴EF=EG.所以设过OE两点的直线的函数解析式为y=kx(k≠0),点E的坐标为(a,a),代入可得a=ak,解得k=1,∴过两点的直线的解析式是为y=x.故答案为:y=x.【点睛】本题主要考查解析式的求法,正方形的性质以及全等三角形的判定与性质,正确构造全等三角形是解题的关键.21、(1)无论m为何值,该方程总有两个不相等的实数根;(2)此三角形的周长为13或17.【解析】
(1)根据判别式即可求出答案.(2)由题意可知:该方程的其中一根为5,从而可求出m的值,最后根据m的值即可求出三角形的周长;【详解】解:(1)∵Δ=-4m∴无论m为何值,该方程总有两个不相等的实数根(2)∵△>0,△ABC为等腰三角形,另外两条边是方程的根,∴5是方程x3-4mx+4将x=5代入原方程,得:25-20m+4m2-1=0当m=2时,原方程为x2-8x+15=0,解得:∵3,5,5能够组成三角形,∴该三角形的周长为3+5+5=13;当m=3时,原方程为x2-12x+35=0,解得:∵5,5,7,能够组成三角形,∴该三角形的周长为5+5+7=17.综上所述:此三角形的周长为13或17.【点睛】本题考查一元二次方程,等腰三角形的定义,三角形三边的关系,解题的关键是熟练运用根与系数的关系,本题属于中等题型.22、(1)图形见解析,四边形的面积为14.5;(2)是直角,理由见解析【解析】
(1)根据勾股定理可得出A点位置如图,然后根据网格特点求面积;(2)根据勾股定理可分别算出BC、CD和BD的长,再用勾股定理逆定理验证即可.【详解】(1)补全如下图:S四边形ABCD=(4+5)×5÷2-4×2÷2-(1+3)×1÷2-1×4÷2=14.5故四边形的面积为14.5(2)是直角,理由如下:根据勾股定理可得:;;;∵;∴△BCD是直角三角形,∠BCD=90°故答案为是直角【点睛】本题考查格点图中线段长度的算法以及面积的算法,灵活运用勾股定理及其逆定理是解题关键23、(1)(﹣3,2),关于x轴对称;(2)点M(1,1),(1,0),(1,﹣1);(3)y=﹣8x﹣1【解析】
(1)根据直角坐标系的特点即可求解,根据题意平移坐标再连接即可;(2)设△ABM的AB边上的高为h,根据面积求出h,即可求解;【详解】解:(1)B(﹣3,2),A、B关于x轴对称;四边形ABCD如图所示;故答案为(﹣3,2),关于x轴对称.(2)设△ABM的AB边上的高为h,由题意:×1×h=8,∴h=1,∴满足条件的点在直线l上,且在矩形内部,∴点M(1,1),(1,0),(1,﹣1).(3)∵直线把四边形ABCD的面积等分,∴直线经过矩形的对称中心(﹣,0),设直线的解析式为y=kx+b,则有,解得,∴直线的解析式为y=﹣8x﹣1.故答案为y=﹣8x﹣1.【点睛】此题主要考查直角坐标系与几何,解题的关键是熟知一次函数解析式的解法.24、详见解析【解析】
首先根据已知易证ΔACF≅ΔDCF,可得F是AD中点,再根据三角形的中位线定理可得EF=1【详解】证明:∵CF⊥AD,CF平分∠ACB,∴∠AFC=∠DFC=90°,∠ACF=∠DCF,又∵CF=CF,∴ΔACF≅ΔDCF(ASA),∴AF=DF.又∵AE=EB,∴EF=1【点睛】此题主要考查了三角形中位线定理,以及全等三角形的判定和性质,关键是掌握三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.25、(1)300;54;(2)条形统计图补充见解析;(3)1.【解析】
(1)从条形统计图中,可得到“B”的人数108人,从扇形统计图中可得“B”组占36%,用人数除以所占的百分比即可求出调查人数,求出“D”组所占整体的百分比,用360°去乘这个百分比即可得出D所对应扇形的圆心角度数;(2)用总人数乘以“C”组
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保健知识培训
- 大声读小古文课件
- 妇女保健宣教课件
- 主管年度研发任务计划
- 领导数码产品行业的品牌发展计划
- 提升品牌信誉度的方法计划
- 美术馆的展览策划与推广计划
- 2024年注册会计师考试应试准备全面攻略及试题及答案
- 学科交叉融合的教学实验计划
- 水资源共享机制的构建与实践计划
- 2024专升本英语答题卡浙江省
- 2024年荆门市水务局事业单位公开招聘工作人员招聘历年公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 反食品浪费及食品安全与健康
- 【劳动教育一等奖教学案例】-二年级劳动教育-《三股辫儿我会编》活动方案
- 校园模拟法庭剧本
- 水准测量记录数据自动生成表
- 2024年十堰市中小学教师职称晋升水平能力测试题附答案
- 肝门部胆管癌护理查房课件
- 神经内科护理查房课件眩晕
- 公司经营合同-公司代持股份协议范本新
- 水平三(五年级)体育《障碍跑-红军长征路》教学设计及教案
评论
0/150
提交评论