2024年上海市外国语大附属外国语学校数学八年级下册期末学业水平测试模拟试题含解析_第1页
2024年上海市外国语大附属外国语学校数学八年级下册期末学业水平测试模拟试题含解析_第2页
2024年上海市外国语大附属外国语学校数学八年级下册期末学业水平测试模拟试题含解析_第3页
2024年上海市外国语大附属外国语学校数学八年级下册期末学业水平测试模拟试题含解析_第4页
2024年上海市外国语大附属外国语学校数学八年级下册期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年上海市外国语大附属外国语学校数学八年级下册期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,平面直角坐标系中,在边长为1的正方形的边上有—动点沿正方形运动一周,则的纵坐标与点走过的路程之间的函数关系用图象表示大致是()A. B. C. D.2.若一次函数向上平移2个单位,则平移后得到的一次函数的图象与轴的交点为A. B. C. D.3.一个多边形的内角和比外角和的3倍多180°,则它的边数是()A.八 B.九 C.十 D.十一4.如图,小明为了测量校园里旗杆的高度,将测角仪竖直放在距旗杆底部点的位置,在处测得旗杆顶端的仰角为60°若测角仪的高度是,则旗杆的高度约为()(精确到.参考数据:)A. B. C. D.5.能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC; B.∠A=∠B,∠C=∠D;C.AB=CD,AD=BC; D.AB=AD,CB=CD6.函数y=中,自变量x的取值范围是()A.x≠0B.x≥2C.x>2且x≠0D.x≥2且x≠07.某市一周日最高气温如图所示,则该市这周的日最高气温的众数是()A.25 B.26 C.27 D.288.二次根式、、、、、中,最简二次根式有()个.A.1个 B.2个 C.3个 D.4个9.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为的菱形,剪口与折痕所成的角的度数为()A. B.C. D.10.在△ABC中,AB=BC=2,O是线段AB的中点,P是射线CO上的一个动点,∠AOC=60,则当△PAB为直角三角形时,AP的长为A.1,,7 B.1,, C.1,, D.1,3,二、填空题(每小题3分,共24分)11.将直线向上平移1个单位,那么平移后所得直线的表达式是_______________12.以正方形ABCD一边AB为边作等边三角形ABE,则∠CED=_____.13.如图,□ABCD的对角线AC,BD相交于点O,点E是CD的中点,△ABD的周长为16cm,则△DOE的周长是_________;14.如图,Rt△ABC中,∠ACB=90°,BC=AC=3,点D是BC边上一点,∠DAC=30°,点E是AD边上一点,CE绕点C逆时针旋转90°得到CF,连接DF,DF的最小值是___.15.在△ABC中,BC=a.作BC边的三等分点C1,使得CC1:BC1=1:2,过点C1作AC的平行线交AB于点A1,过点A1作BC的平行线交AC于点D1,作BC1边的三等分点C2,使得C1C2:BC2=1:2,过点C2作AC的平行线交AB于点A2,过点A2作BC的平行线交A1C1于点D2;如此进行下去,则线段AnDn的长度为______________.16.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为.17.农科院对甲、乙两种甜玉米各10块试验田进行试验后,得到甲、乙两个品种每公顷的平均产量相同,而甲、乙两个品种产量的方差分别为,,则产量较为稳定的品种是_____________(填“甲”或“乙”).18.对于实数a,b,定义运算“﹡”:.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=1.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2=.三、解答题(共66分)19.(10分)莲城超市以10元/件的价格调进一批商品,根据前期销售情况,每天销售量y(件)与该商品定价x(元)是一次函数关系,如图所示.(1)求销售量y与定价x之间的函数关系式;(2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所获得的利润.20.(6分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.(1)问题:方程x3+x2-2x=0的解是x1=0,x2=,x3=;(2)拓展:用“转化”思想求方程的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.21.(6分)(问题原型)如图,在中,对角线的垂直平分线交于点,交于点,交于点.求证:四边形是菱形.(小海的证法)证明:是的垂直平分线,,(第一步),(第二步).(第三步)四边形是平行四边形.(第四步)四边形是菱形.(第五步)(老师评析)小海利用对角线互相平分证明了四边形是平行四边形,再利用对角线互相垂直证明它是菱形,可惜有一步错了.(挑错改错)(1)小海的证明过程在第________步上开始出现了错误.(2)请你根据小海的证题思路写出此题的正确解答过程,22.(8分)如图,双曲线y=经过Rt△BOC斜边上的点A,且满足,与BC交于点D,S△BOD=21,求:(1)S△BOC(2)k的值.23.(8分)我市某风景区门票价格如图所示,有甲、乙两个旅行团队,计划在端午节期间到该景点游玩,两团队游客人数之和为100人,乙团队人数不超过40人.设甲团队人数为人,如果甲、乙两团队分别购买门票,两团队门票款之和为元.(1)直接写出关于的函数关系式,并写出自变的取值范围;(2)若甲团队人数不超过80人,计算甲、乙两团队联合购票比分别购票最多可节约多少钱?(3)端午节之后,该风景区对门票价格作了如下调整:人数不超过40人时,门票价格不变,人数超过40人但不超过80人时,每张门票降价元;人数超过80人时,每张门票降价元.在(2)的条件下,若甲、乙两个旅行团端午节之后去游玩联合购票比分别购票最多可节约3900元,求的值.24.(8分)平面直角坐标系中,直线y=2kx-2k(k>0)交y轴于点B,与直线y=kx交于点A.(1)求点A的横坐标;(2)直接写出的x的取值范围;(3)若P(0,3)求PA+OA的最小值,并求此时k的值;(4)若C(0,2)以A,B,C,D为顶点的四边形是以BC为一条边的菱形,求k的值.25.(10分)如图,正比例函数与反比例函数的图像交于A,B两点,过点A作AC⊥x轴,垂足为C,△ACO的面积为1.(1)求反比例函数的表达式;(2)点B的坐标为;(3)当时,直接写出x的取值范围.26.(10分)用适当的方法解下列方程:(2x-1)(x+3)=1.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据正方形的边长即可求出AB=BC=CD=DA=1,然后结合图象可知点A的纵坐标为2,线段BC上所有点的纵坐标都为1,线段DA上所有点的纵坐标都为2,再根据点P运动的位置逐一分析,用排除法即可得出结论.【详解】解:∵正方形ABCD的边长为1,∴AB=BC=CD=DA=1由图象可知:点A的纵坐标为2,线段BC上所有点的纵坐标都为1,线段DA上所有点的纵坐标都为2,∴当点P从A到B运动时,即0<S≤1时,点P的纵坐标逐渐减小,故可排除选项A;当点P到点B时,即当S=1时,点P的纵坐标y=1,故可排除选项B;当点P从B到C运动时,即1<S≤2时,点P的纵坐标y恒等于1,故可排除C;当点P从C到D运动时,即2<S≤3时,点P的纵坐标逐渐增大;当点P从D到A运动时,即3<S≤4时,点P的纵坐标y恒等于2,故选D.【点睛】此题考查的是根据图形上的点的运动,找出对应的图象,掌握横坐标、纵坐标的实际意义和根据点的不同位置逐一分析是解决此题的关键.2、C【解析】

首先根据平移的性质,求出新的函数解析式,然后即可求出与轴的交点.【详解】解:根据题意,可得平移后的函数解析式为,即为∴与轴的交点,即代入解析式,得∴与轴的交点为故答案为C.【点睛】此题主要考查根据函数图像的平移特征,求坐标,熟练掌握,即可解题.3、B【解析】

多边形的内角和比外角和的3倍多180°,而多边形的外角和是360°,则内角和是3×360°+180°.n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,得到方程,从而求出边数.【详解】根据题意,得:(n-2)•180°=3×360°+180°,解得:n=1,则这个多边形的边数是1.故选B.【点睛】本题考查了多边形内角与外角,此题只要结合多边形的内角和公式寻求等量关系,构建方程即可求解.4、D【解析】

过D作DE⊥AB,根据矩形的性质得出BC=DE=5m根据30°所对的直角边等于斜边的一半,可得AD=10,根据勾股定理可得的长,根据AB=AE+BE=AE+CD算出答案.【详解】过D作DE⊥AB于点E,∵在D处测得旗杆顶端A的仰角为60°,∴∠ADE=60°.∴∠DAE=30°.∵BC=DE=5m,AD=2DE=10∴,∴AB=AE+BE=AE+CD=8.65+1.6=10.25m≈10.3m.故答案为:D【点睛】本题考查了仰角俯角问题,正确作出辅助线,构造出30°直角三角形模型是解决问题的关键.5、C【解析】

利用一组对边平行且相等的四边形为平行四边形可对A进行判定;根据两组对角分别相等的四边形为平行四边形可对B进行判定;根据两组对边分别相等的四边形为平行四边形可对C、D进行判定.【详解】A、若AB∥CD,AB=CD,则四边形ABCD为平行四边形,所以A选项错误;B、若∠A=∠C,∠B=∠D,则四边形ABCD为平行四边形,所以B选项错误;C、若AB=CD,AD=BC,则四边形ABCD为平行四边形,所以C选项正确;D、若AB=CD,AD=BC,则四边形ABCD为平行四边形,所以D选项错误.故选:C.【点睛】本题考查了平行四边形的判定,解题的关键是熟知平行四边形的判定定理.6、B【解析】试题分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解:由题意得,x﹣1≥0且x≠0,∴x≥1.故选:B.7、A【解析】分析:根据众数是一组数据中出现次数最多的那个数求解即可.详解:∵25出现了3次,出现的次数最多,∴周的日最高气温的众数是25.故选A.点睛:本题考查了众数的定义,熟练掌握一组数据中出现次数最多的那个数是众数是解答本题的关键.众数可能没有,可能有1个,也可能有多个.8、C【解析】

直接利用最简二次根式的定义判断得出结论即可.【详解】在二次根式、、、、、中,最简二次根式有:、、,共3个故选:C【点睛】本题考查了最简二次根式的定义,在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.9、C【解析】

折痕为AC与BD,∠BAD=100°,根据菱形的性质:菱形的对角线平分对角,可得∠ABD=40°,易得∠BAC=50°,所以剪口与折痕所成的角a的度数应为40°或50°.【详解】∵四边形ABCD是菱形,

∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,

∵∠BAD=100°,

∴∠ABC=180°-∠BAD=180°-100°=80°,

∴∠ABD=40°,∠BAC=50°.

∴剪口与折痕所成的角a的度数应为40°或50°.

故选:C.【点睛】此题考查菱形的判定,折叠问题,解题关键是熟练掌握菱形的性质:菱形的对角线平分每一组对角.10、C【解析】

当时,由对顶角的性质可得,易得,易得的长,利用勾股定理可得的长;当时,分两种情况讨论:①利用直角三角形斜边的中线等于斜边的一半得出,易得为等边三角形,利用锐角三角函数可得的长;易得,利用勾股定理可得的长;②利用直角三角形斜边的中线等于斜边的一半可得结论.【详解】解:如图1,当时,,,,,为等边三角形,,;如图2,当时,,,,在直角三角形中,;如图3,,,,,为等边三角形,,故选:C.【点睛】本题主要考查了勾股定理,含直角三角形的性质和直角三角形斜边的中线,运用分类讨论,数形结合思想是解答此题的关键.二、填空题(每小题3分,共24分)11、【解析】

平移时k的值不变,只有b发生变化.【详解】原直线的k=2,b=0;向上平移2个单位长度,得到了新直线,那么新直线的k=2,b=0+1=1,∴新直线的解析式为y=2x+1.故答案为:y=2x+1.【点睛】本题考查了一次函数图象的几何变换,难度不大,要注意平移后k值不变.12、30°或150°.【解析】

等边△ABE的顶点E可能在正方形外部,也可能在正方形内部,因此分两种情况画出图形进行求解即可.【详解】分两种情况:①当点E在正方形ABCD外侧时,如图1所示:∵四边形ABCD是正方形,△ABE是等边三角形∴∠ABC=90°,BC=BE=AB,∠ABE=∠AEB=60°,∴∠CBE=∠CBA+∠ABE=90°+60°=150°,∵BC=BE,∴∠BCE═∠BEC=15°,同理可得∠EDA═∠DEA=15°,∴∠CED=∠AEB﹣∠CEB﹣∠DEA=60°﹣15°﹣15°=30°;②当点E在正方形ABCD内侧时,如图2所示:∵∠EAB=∠AEB=60°,∠BAC=90°,∴∠CAE=30°,∵AC=AE,∴∠ACE=∠AEC=75°,同理∠DEB=∠EDB=75°,∴∠CED=360°﹣60°﹣75°﹣75°=150°;综上所述:∠CED为30°或150°;故答案为:30°或150°.【点睛】本题考查了正方形的性质及等边三角形的性质,正确地进行分类,熟练掌握相关的性质是解题的关键.13、8【解析】

∵四边形ABCD是平行四边形,∴O是BD中点,△ABD≌△CDB,又∵E是CD中点,∴OE是△BCD的中位线,∴OE=BC,即△DOE的周长=△BCD的周长,∴△DOE的周长=△DAB的周长.∴△DOE的周长=×16=8cm.14、.【解析】

先依据条件判定△ACE≌△BCF,可得∠CBF=∠CAE=30°,即可得到点F在射线BF上,由此可得当DF⊥BF时,DF最小,依据∠DBF=30°,即可得到DF=BD=【详解】由旋转可得,FC=EC,∠ECF=90°,又∵∠ACB=90°,BC=AC=3,∴∠CAE=∠CBF,∴△ACE≌△BCF,∴∠CBF=∠CAE=30°,∴点F在射线BF上,如图,当DF⊥BF时,DF最小,又∵Rt△ACD中,∠CAD=30°,AC=3=BC,∴CD=,∴BD=3﹣,又∵∠DBF=30°,∴DF=BD=,故答案为.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,得到点F的运动轨迹是本题的难点.15、【解析】

根据平行四边形的判定定理得到四边形A1C1CD1为平行四边形,根据平行四边形的性质得到A1D1=C1C,总结规律,根据规律解答.【详解】∵A1C1∥AC,A1D1∥BC,∴四边形A1C1CD1为平行四边形,∴A1D1=C1C=a=,同理,四边形A2C2C1D2为平行四边形,∴A2D2=C1C2=a=,……∴线段AnDn=,故答案为:.【点睛】本题考查的是平行四边形的判定和性质、图形的变化规律,掌握平行四边形的判定定理和性质定理是解题的关键.16、20%.【解析】

解答此题利用的数量关系是:商品原来价格×(1-每次降价的百分率)2=现在价格,设出未知数,列方程解答即可.【详解】设这种商品平均每次降价的百分率为x,根据题意列方程得,125(1−x)2=80,解得x1=0.2=20%,x2=1.8(不合题意,舍去);故答案为20%【点睛】本题考查了一元二次方程的应用,读懂题意列出关系式是解题的关键.17、乙【解析】因为S甲2≈0.01>S乙2≈0.002,方差小的为乙,所以本题中比较稳定的是乙.18、3或﹣3【解析】试题分析:∵x1,x2是一元二次方程x2﹣5x+6=0的两个根,∴(x﹣3)(x﹣2)=0,解得:x=3或2.①当x1=3,x2=2时,x1﹡x2=32﹣3×2=3;②当x1=2,x2=3时,x1﹡x2=3×2﹣32=﹣3.三、解答题(共66分)19、(1)y=﹣2x+1(2)18元【解析】

(1)由图象可知y与x是一次函数关系,由函数图象过点(11,10)和(15,2),用待定系数法即可求得y与x的函数关系式.(2)根据(1)求出的函数关系式,再求出每件该商品的利润,即可求得求超市每天销售这种商品所获得的利润.【详解】解:(1)设y=kx+b(k≠0),由图象可知,,解得∴销售量y与定价x之间的函数关系式是:y=﹣2x+1.(2)超市每天销售这种商品所获得的利润是:W=(﹣2×13+1)(13﹣10)=1820、(1)-2,1;(2)x=3;(3)4m.【解析】

(1)因式分解多项式,然后得结论;

(2)两边平方,把无理方程转化为整式方程,求解,注意验根;

(3)设AP的长为xm,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,【详解】解:(1),,所以或或,,;故答案为,1;(2),方程的两边平方,得即或,,当时,,所以不是原方程的解.所以方程的解是;(3)因为四边形是矩形,所以,设,则因为,,两边平方,得整理,得两边平方并整理,得即所以.经检验,是方程的解.答:的长为.【点睛】考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.21、(1)二;(2)见解析.【解析】

(1)由垂直平分线性质可知,AC和EF并不是互相平分的,EF垂直平分AC,但AC并不平分EF,需要通过证明才可以得出,故第2步出现了错误;(2))根据平行四边形性质求出AD∥BC,推出,证,推出,可得四边形是平行四边形,推出菱形.【详解】(1)二(2)四边形是平行四边形,..是的垂直平分线,.在与中,..四边形是平行四边形..四边形是菱形.【点睛】本题考查菱形的判定,以及平行四边形的性质,关键是掌握对角线互相垂直的平行四边形是菱形22、(1)S△BOC=25;(2)k=8【解析】

(1)过点A作AE⊥OC于点E,交OD于点F,由平行线分线段成比例可得===,利用面积比是相似比的平方得==,根据反比例函数图象性质得S△AOE=S△ODC,所以==,进而△BOC的面积.(2)设A(a,b),由(1)可得S△OCD=4,进而可得ab=8,从而求出k的值.【详解】解:过点A作AE⊥OC于点E,交OD于点F,∵AE∥BC,,∴===,∴==,∵S△AOE=S△ODC,∴==,∴S△BOC=25,(2)设A(a,b),∵点A在第一象限,∴k=ab>0,∵S△BOC=25,S△BOD=21,∴S△OCD=4即ab=4,∴ab=8,∴k=8.【点睛】本题考查了反比例函数的图象和性质及相似三角形的性质.灵活运用反比例函数图象的几何意义是解题关键.23、(1)当时,;当时,;(2)甲、乙两团队联合购票比分别购票最多可节约1800元;(3)的值为15.【解析】

(1)由乙团队人数不超过40人,讨论x的取值范围,得到分段函数;(2)由(1)在甲团队人数不超过80人时,讨论的最大值与联合购票费用相减即可;(3)在(2)的基础上在购票单价减去a元,经过讨论,得到含有a的购票最大费用,两个团队联合购票费用为100(120-2a),根据题意构造方程.【详解】解:(1)由题意乙团队人数为人,则,,当时,当时,(2)由(1)甲团队人数不超过80人∵,∴随增大而减小,∴当时,,当两团队联合购票时购票费用为甲、乙两团队联合购票比分别购票最多可节约元.(3)在(2)的条件下当时,∵,∴随增大而减小,∴当时,,由价格方案,联合购票费用为,∴,解得,答:的值为15.【点睛】本题是一次函数实际应用问题,考查了分段函数,一元一次不等式以及如何讨论含有字母参数的一次函数最值问题.24、(1)点横坐标为2;(2);(3);(4)或.【解析】

(1)联立两直线方程即可得出答案;(2)先根据图像求出k的取值范围,再解不等式组即可得出答案;(3)先求出点关于直线的对称点为的坐标,连接交直线于点,此时最小,根据将和P的坐标求出直线的解析式,再令x=2,求出y的值,即可得出点A的坐标,再将点A的坐标代入y=kx中即可得出答案;(4)根据题意得出△ABC为等腰三角形,且BC为腰,再根据A、B和C的坐标分别求出AB、BC和AC的长度,分情况进行讨论:①当时,②当时,即可得出答案.【详解】解:(1)根据题意得,解得点横坐标为2;(2)由图像可知k>0∴由2kx-2k

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论