版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
编者小k君小注:本专辑专为2022年初中浙教版数学第二学期研发,供中等及以上学生使用。思路设计:重在培优训练,分选择、填空、解答三种类型题,知识难度层层递进,由中等到压轴,基础差的学生选做每种类型题的前4题;基础中等的学生必做前4题、选做5-8题;尖子生全部题型必做,冲刺压轴题。专题04平行线模型之M型解题方法专练(解析版)错误率:___________易错题号:___________一、单选题1.如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为()A.70° B.65° C.35° D.5°【标准答案】B【思路指引】作CF∥AB,根据平行线的性质可以得到∠1=∠BCF,∠FCE=∠2,从而可得∠BCE的度数,本题得以解决.【详解详析】作CF∥AB,∵AB∥DE,∴CF∥DE,∴AB∥DE∥DE,∴∠1=∠BCF,∠FCE=∠2,∵∠1=30°,∠2=35°,∴∠BCF=30°,∠FCE=35°,∴∠BCE=65°,故选:B.【名师指路】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.2.如图,已知,将直角三角形如图放置,若∠2=40°,则∠1为()A.120° B.130° C.140° D.150°【标准答案】B【思路指引】过A作AB∥a,即可得到a∥b∥AB,依据平行线的性质,即可得到∠5的度数,进而得出的度数.【详解详析】解:标注字母,如图所示,过A作AB∥a,∵a∥b,∴a∥b∥AB,∴∠2=∠3=40°,∠4=∠5,又∵∠CAD=90°,∴∠4=50°,∴∠5=50°,∴∠1=180°-50°=130°,故选:B.【名师指路】本题考查了平行线的性质,平行公理,熟记性质并作出辅助线是解题的关键.3.如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为()A.70° B.65° C.35° D.50°【标准答案】B【思路指引】根据平行线的性质和∠1=30°,∠2=35°,可以得到∠BCE的度数,本题得以解决.【详解详析】解:作CF∥AB,∵AB∥DE,∴CF∥DE,∴AB∥DE∥CF,∴∠1=∠BCF,∠FCE=∠2,∵∠1=30°,∠2=35°,∴∠BCF=30°,∠FCE=35°,∴∠BCE=65°,故选:B.【名师指路】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.4.如图,直线a//b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=43°,则∠2的度数为()
A.101° B.103° C.105° D.107°【标准答案】B【思路指引】如图,首先证明∠AMO=∠2;然后运用对顶角的性质求出∠ANM=43°,借助三角形外角的性质求出∠AMO即可解决问题.【详解详析】解:如图,∵直线a∥b,
∴∠AMO=∠2;
∵∠ANM=∠1,∠1=43°,
∴∠ANM=43°,
∴∠AMO=∠A+∠ANM=60°+43°=103°,
∴∠2=∠AMO=103°.
故选:B.【名师指路】该题主要考查了平行线的性质、对顶角的性质、三角形的外角性质等几何知识点及其应用问题;牢固掌握平行线的性质、对顶角的性质等几何知识点是灵活运用、解题的基础.5.如图,ABEF,∠D=90°,则,,的大小关系是()A. B.C. D.【标准答案】D【思路指引】通过作辅助线,过点C和点D作CGAB,DHAB,可得CGDHAB,根据ABEF,可得ABEFCGDH,再根据平行线的性质即可得γ+β-α=90°,进而可得结论.【详解详析】解:如图,过点C和点D作CGAB,DHAB,
∵CGAB,DHAB,∴CGDHAB,
∵ABEF,
∴ABEFCGDH,∵CGAB,
∴∠BCG=α,
∴∠GCD=∠BCD-∠BCG=β-α,
∵CGDH,
∴∠CDH=∠GCD=β-α,
∵HDEF,
∴∠HDE=γ,
∵∠EDC=∠HDE+∠CDH=90°,
∴γ+β-α=90°,
∴β=α+90°-γ.
故选:D.【名师指路】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.6.如图所示,如果AB∥CD,则∠α、∠β、∠γ之间的关系为()A.∠α+∠β+∠γ=180° B.∠α-∠β+∠γ=180°C.∠α+∠β-∠γ=180° D.∠α-∠β-∠γ=180°[【标准答案】C【思路指引】过E作EF∥AB,由平行线的质可得EF∥CD,∠α+∠AEF=180°,∠FED=∠γ,由∠β=∠AEF+∠FED即可得∠α、∠β、∠γ之间的关系.【详解详析】解:过点E作EF∥AB,
∴∠α+∠AEF=180°(两直线平行,同旁内角互补),
∵AB∥CD,
∴EF∥CD,
∴∠FED=∠EDC(两直线平行,内错角相等),
∵∠β=∠AEF+∠FED,
又∵∠γ=∠EDC,
∴∠α+∠β-∠γ=180°,
故选:C.【名师指路】本题主要考查了平行线的性质,正确作出辅助线是解答此题的关键.7.如图,,点在上,,,则下列结论正确的个数是()(1);(2);(3);(4)A.1个 B.2个 C.3个 D.4个【标准答案】B【思路指引】利用平行线的性质和三角形的性质依次判断即可求解.【详解详析】解:∵AB∥CD,∴∠A+∠C=180°,又∵∠A=110°,∴∠C=70°,∴∠AED=∠C+∠D=85°,故(2)正确,∵∠C+∠D+∠CED=180°,∴∠D+∠CED=110°,∴∠A=∠CED+∠D,故(3)正确,∵点E在AC上的任意一点,∴AE无法判断等于CE,∠BED无法判断等于45°,故(1)、(4)错误,故选:B.【名师指路】本题考查了平行线的性质,三角形的外角的性质,掌握平行线的性质是本题的关键.8.如图,∠BCD=70°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=110° B.∠α+∠β=70° C.∠β﹣∠α=70° D.∠α+∠β=90°【标准答案】B【思路指引】过点C作CF∥AB,根据平行线的性质得到∠BCF=∠α,∠DCF=∠β,由此即可解答.【详解详析】如图,过点C作CF∥AB,∵AB∥DE,∴AB∥CF∥DE,∴∠BCF=∠α,∠DCF=∠β,∵∠BCD=70°,∴∠BCD=∠BCF+∠DCF=∠α+∠β=70°,∴∠α+∠β=70°.故选B.【名师指路】本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线的性质进行推理证明是解决本题的关键.9.如图,AB∥CD,点E,P在直线AB上(P在E的右侧),点G在直线CD上,EF⊥FG,垂足为F,M为线段EF上的一动点,连接GP,GM,∠FGP与∠APG的角平分线交与点Q,且点Q在直线AB,CD之间的区域,下列结论:①∠AEF+∠CGF=90°;②∠AEF+2∠PQG=270°;③若∠MGF=2∠CGF,则3∠AEF+∠MGC=270°;④若∠MGF=n∠CGF,则∠AEF∠MGC=90°.正确的个数是()
A.4 B.3 C.2 D.1【标准答案】A【思路指引】①过点F作FH∥AB,利用平行线的性质以及已知即可证明;②利用角平分线的性质以及平行线的性质得到∠3=2∠2,∠CGF+2∠1+∠3=180°,结合①的结论即可证明;③由已知得到∠MGC=3∠CGF,结合①的结论即可证明;④由已知得到∠MGC=(n+1)∠CGF,结合①的结论即可证明.【详解详析】解:①过点F作FH∥AB,如图:
∵AB∥CD,∴AB∥FH∥CD,∴∠AEF=∠EFH,∠CGF=∠GFH,∵EF⊥FG,即∠EFG=∠EFH+∠GFH=90°,∴∠AEF+∠CGF=90°,故①正确;②∵AB∥CD,PQ平分∠APG,GQ平分∠FGP,
∴∠APQ=∠2,∠FGQ=∠1,∴∠3=∠APQ+∠2=2∠2,∠CGF+∠FGQ+∠1+∠3=∠CGF+2∠1+∠3=180°,即2∠1=180°-2∠2-∠CGF,∴2∠2+2∠1=180°-∠CGF,∵∠PQG=180°-(∠2+∠1),∴2∠PQG=360°-2(∠2+∠1)=360°-(180°-∠CGF)=180°+∠CGF,∴∠AEF+2∠PQG=∠AEF+180°+∠CGF=180°+90°=270°,故②正确;③∵∠MGF=2∠CGF,∴∠MGC=3∠CGF,∴3∠AEF+∠MGC=3∠AEF+3∠CGF=3(∠AEF+∠CGF)=390°=270°;3∠AEF+∠MGC=270°,故③正确;
④∵∠MGF=n∠CGF,∴∠MGC=(n+1)∠CGF,即∠CGF=∠MGC,∵∠AEF+∠CGF=90°,∴∠AEF∠MGC=90°,故④正确.综上,①②③④都正确,共4个,故选:A.【名师指路】本题主要考查了平行线的性质,角平分线的定义等知识点,作辅助线求得∠AEF+∠CGF=90°,是解此题的关键.10.如图,已知直线、被直线所截,,E是平面内任意一点(点E不在直线、、上),设,.下列各式:①,②,③,④,的度数可能是()A.②③ B.①④ C.①③④ D.①②③④【标准答案】D【思路指引】由题意根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解详析】解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=β,
∵∠AOC=∠BAE1+∠AE1C,
∴∠AE1C=β-α.
(2)如图2,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,
∴∠AE2C=α+β.
(3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=β,
∵∠BAE3=∠BOE3+∠AE3C,
∴∠AE3C=α-β.
(4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,
∴∠AE4C=360°-α-β.
(5)(6)当点E在CD的下方时,同理可得∠AEC=α-β或β-α.
综上所述,∠AEC的度数可能为β-α,α+β,α-β,360°-α-β,即①②③④.
故选:D.【名师指路】本题主要考查平行线的性质的运用,解题时注意两直线平行,同位角相等;两直线平行,内错角相等以及分类讨论.二、填空题11.已知直线a∥b,将一块含30°角的直角三角板ABC按如图所示方式放置(∠BAC=30°),并且顶点A,C分别落在直线a,b上,若∠1=22°,则∠2的度数是_____.【标准答案】38°【思路指引】过点B作BD∥a,可得∠ABD=∠1=22°,a∥b,可得BD∥b,进而可求∠2的度数.【详解详析】如图,过点B作BD∥a,
∴∠ABD=∠1=22°,
∵a∥b,
∴BD∥b,
∴∠2=∠DBC=∠ABC-∠ABD=60°-22°=38°.
故答案为:38°.【名师指路】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.12.如图,,则____________________.【标准答案】【思路指引】过点做的平行线,利用平行线的性质,即可证明.【详解详析】过点做的平行线,又又.故答案为:.【名师指路】本题考查了通过平行线的性质求解角度问题,解题关键在于过中间的点作已知直线的平行线.13.如图,已知:AB∥CD,∠1=50°,∠2=113°,则∠3=___度.【标准答案】63【思路指引】如图,易知∠3=∠2-∠1,计算即可.【详解详析】如图所示,根据平行线的性质易知∠3=∠2-∠1=113°-50°=63°.【名师指路】本题主要考查平行线的性质,熟练掌握平行线的性质是解答的关键.14.请阅读小明同学在学习平行线这章知识点时的一段笔记,然后解决问题.小明:老师说在解决有关平行线的问题时,如果无法直接得到角的关系,就需要借助辅助线来帮助解答,今天老师介绍了一个“美味”的模型一“猪蹄模型”.即已知:如图1,,为、之间一点,连接,得到.求证:小明笔记上写出的证明过程如下:证明:过点作,∴∵,∴∴.∵∴请你利用“猪蹄模型”得到的结论或解题方法,完成下面的两个问题.(1)如图,若,,则___________.(2)如图,,平分,平分,,则___________.【标准答案】240°51°【思路指引】(1)作EM∥AB,FN∥CD,如图,根据平行线的性质得AB∥EM∥FN∥CD,所以∠B=∠1,∠2=∠3,∠4+∠C=180°,然后利用等量代换计算∠B+∠F+∠C;(2)分别过G、H作AB的平行线MN和RS,根据平行线的性质和角平分线的性质可用∠ABG和∠DCG分别表示出∠H和∠G,从而可找到∠H和∠G的关系,结合条件可求得∠H.【详解详析】(1)解:作EM∥AB,FN∥CD,如图,AB∥CD,∴AB∥EM∥FN∥CD,∴∠B=∠1,∠2=∠3,∠4+∠C=180°,∴∠B+∠CFE+∠C=∠1+∠3+∠4+∠C=∠BEF+∠4+∠C=∠BEF+180°,∵,∴∠B+∠CFE+∠C=60°+180°=240°;(2)解:如图,分别过G、H作AB的平行线MN和RS,∵平分,平分,∴∠ABE=∠ABG,∠SHC=∠DCF=∠DCG,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=∠ABG,∠SHC=∠DCF=∠DCG,∠NGB+∠ABG=∠MGC+∠DCG=180°,∴∠BHC=180°-∠RHB-∠SHC=180°-(∠ABG+∠DCG),∠BGC=180°-∠NGB-∠MGC=180°-(180°-∠ABG)-(180°-∠DCG)=∠ABG+∠DCG-180°,∴∠BGC=360°-2∠BHC-180°=180°-2∠BHC,又∵∠BGC=∠BHC+27°,∴180°-2∠BHC=∠BHC+27°,∴∠BHC=51°.故答案为:(1)240°;(2)51°.【名师指路】本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.15.如图,,平分,,,则__________.【标准答案】【思路指引】过E点作EM∥AB,根据平行线的性质可得∠BED=∠B+∠D,利用角平分线的定义可求得∠B+3∠D=132°,结合∠B-∠D=28°即可求解.【详解详析】解:过E点作EM∥AB,∴∠B=∠BEM,∵AB∥CD,∴EM∥CD,∴∠MED=∠D,∴∠BED=∠B+∠D,∵EF平分∠BED,∴∠DEF=∠BED,∵∠DEF+∠D=66°,∴∠BED+∠D=66°,∴∠BED+2∠D=132°,即∠B+3∠D=132°,∵∠B-∠D=28°,∴∠B=54°,∠D=26°,∴∠BED=80°.故答案为:80°.【名师指路】本题主要考查平行线的性质,角平分线的定义,作出辅助线证出∠BED=∠B+∠D是解题的关键.16.如图,AB//CD,则______【标准答案】40°【思路指引】首先过点作,由,即可得,然后根据两直线平行,内错角相等,即可求得的度数.【详解详析】解:过点作,,,,,.故答案为:.【名师指路】此题考查了平行线的性质.此题比较简单,解题的关键是注意两直线平行,内错角相等定理的应用与辅助线的作法.17.如图,已知ABCD,易得∠1+∠2+∠3=360°,∠1+∠2+∠3+∠4=540°,根据以上的规律求∠1+∠2+∠3+…+∠n=__________°.【标准答案】【思路指引】过点P作平行于AB的直线,运用两次两条直线平行,同旁内角互补即可得到三个角的和;分别过点P,Q作AB的平行线,运用三次平行线的性质,即可得到四个角的和;同样作辅助线,运用(n-1)次平行线的性质,则n个角的和是.【详解详析】解:(1)如图,过点P作一条直线PM平行于AB,∵AB∥CD,AB∥PM∵AB∥PM∥CD,∴∠1+∠APM=180°,∠MPC+∠3=180°,∴∠1+∠APC+∠3=360°;(2)如图,过点P、Q作PM、QN平行于AB,∵AB∥CD,∵AB∥PM∥QN∥CD,∴∠1+∠APM=180°,∠MPQ+∠PQN=180°,∠NQC+∠4=180°;∴∠1+∠APQ+∠PQC+∠4=540°;根据上述规律,显然作(n-2)条辅助线,运用(n-1)次两条直线平行,同旁内角互补.即可得到∠1+∠2+∠3+…+∠n=180°(n-1).故答案为:【名师指路】此题考查了平行线的性质.注意掌握辅助线的作法是解此题的关键.三、解答题18.直线AB∥CD,M为AB上一定点,N为CD上一定点,E为直线AB和直线CD之间的一点.(1)当点E在MN上时,如图1所示,请直接写出∠MEN,∠CNE,∠AME之间的数量关系;(2)当点E在MN左侧时,如图2所示,试猜想∠MEN,∠CNE,∠AME之间的数量关系,并证明;(3)当点E在MN右侧时,如图3所示,试猜想∠MEN,∠CNE,∠AME之间的数量关系,并证明.【标准答案】(1)∠MEN=∠CNE+∠AME;(2)∠MEN=∠CNE+∠AME,证明见解析;(3)∠MEN+∠CNE+∠AME=360°,证明见解析.【思路指引】(1)由平行线的性质及平角的定义即可得解;(2)过点E作直线EF∥AB,则EF∥CD,由平行线的性质即可得解;(3)过点E作直线EG∥AB,则EG∥CD,由平行线的性质即可得解.【详解详析】解:(1)如图1,∠MEN=∠CNE+∠AME,证明如下:∵AB∥CD,∴∠CNE+∠AME=180°,∵∠MEN=180°,∴∠MEN=∠CNE+∠AME;(2)如图2,∠MEN=∠CNE+∠AME,证明如下:过点E作直线EF∥AB,则EF∥CD,∴∠AME=∠MEF,∠CNE=∠NEF,∵∠MEN=∠MEF+∠NEF,∴∠MEN=∠CNE+∠AME;(3)如图3,∠MEN+∠CNE+∠AME=360°,证明如下:过点E作直线EG∥AB,则EG∥CD,∴∠AME+∠MEG=180°,∠CNE+∠NEG=180°,∴∠AME+∠MEG+∠CNE+∠NEG=360°,∵∠MEG+∠NEG=∠MEN,∴∠MEN+∠CNE+∠AME=360°.【名师指路】此题考查了平行线的性质,熟记“两直线平行,内错角相等”及“两直线平行,同旁内角互补”是解题的关键.19.请在横线上填上合适的内容.(1)如图(1)已知//,则.解:过点作直线//.∴().()∵//,//,∴()//().(如果两条直线和第三条直线平行,那么这两直线平行)∴().().∴.∴.(2)如图②,如果//,则()【标准答案】(1)∠B,两直线平行,内错角相等,EF,CD,∠D,两直线平行,内错角相等;
(2)360°【思路指引】(1)过点E作直线EF∥AB,则∠FEB=∠B,继而由EF∥CD可得∠FED=∠D.所以∠B+∠D=∠BEF+∠FED,即∠B+∠D=∠BED;
(2)过点E作直线EF∥AB,则∠FEB+∠B=180°,继而由EF∥CD可得∠FED+∠D=180°.所以∠B+∠D+∠BEF+∠FED=360°,即∠B+∠BED+∠D=360°.【详解详析】解:(1)解:过点E作直线EF∥AB.
∴∠FEB=∠B.(两直线平行,内错角相等)
∵AB∥CD,EF∥AB,
∴EF∥CD(如果两条直线和第三条直线平行,那么这两直线平行).
∴∠FED=∠D(两直线平行,内错角相等).
∴∠B+∠D=∠BEF+∠FED.
∴∠B+∠D=∠BED.
故答案为:∠B,两直线平行,内错角相等,EF,CD,∠D,两直线平行,内错角相等;
(2)解:过点E作直线EF∥AB,如图.
∴∠FEB+∠B=180°.两直线平行,内错角相等).
∵AB∥CD,EF∥AB,
∴EF∥CD(如果两条直线和第三条直线平行,那么这两直线平行).
∴∠FED+∠D=180°(两直线平行,内错角相等).
∴∠B+∠D+∠BEF+∠FED=360°.
∴∠B+∠BED+∠D=360°.
故答案为:360°.【名师指路】本题考查了平行线的判定与性质,平行公理及其推论,熟练掌握平行线判定、性质说理是关键.20.如图1,,,,求的度数.小明的思路是:如图2,过作,通过平行线性质可求的度数.
(1)请你按小明的思路,写出度数的求解过程;(2)如图3,,点在直线上运动,记,.①当点在线段上运动时,则与、之间有何数量关系?请说明理由;②若点不在线段上运动时,请直接写出与、之间的数量关系.【标准答案】(1)见解析;(2)①,见解析;②【思路指引】(1)过作,利用平行线的性质即可得出答案;(2)①过作,再利用平行线的性质即可得出答案;②分在延长线上和在延长线上两种情况进行讨论,结合平行线的性质即可得出答案【详解详析】解:(1)如图2,过作,,,,,,,,.(2)①、,理由:如图3,过作,,,,,;②、.如备用图1,当在延长线上时,;
理由:如备用图1,过作,,,,,;如备用图2所示,当在延长线上时,;理由:如备用图2,过P作,,,,,;综上所述,.【名师指路】本题考查的是平行线的性质,解题的关键是过作.21.如图,直线AB//CD,点M、N分别在直线AB、CD上,点E为直线AB与CD之间的一点,连接ME、NE,且∠MEN=80°,∠AME的角平分线与∠CNE的角平分线交于点F,则∠MFN的度数为______________.【标准答案】40°或140°【思路指引】分两种情况画图讨论:分别过点E和点F作EG∥AB,FH∥AB,可得EG∥FH∥AB,根据AB∥CD,可得EG∥FH∥AB∥CD,情况一根据平行线的性质可得∠MFN=∠MFH+∠NFH=∠AMF+∠CNF=40°;情况二根据平行线的性质可得∠MFN=∠MFH+∠NFH=∠AMF+∠CNF=140°.进而得到结论.【详解详析】解:分两种情况画图讨论:分别过点E和点F作EG∥AB,FH∥AB,∴EG∥FH∥AB,∵AB∥CD,∴EG∥FH∥AB∥CD,如图,∵EG∥AB∥CD,∴∠AME=∠MEG,∠CNE=∠NEG,∴∠AME+∠CNE=∠MEG+∠NEG=∠MEN=80°,∵∠AME的角平分线与∠CNE的角平分线交于点F,∴∠AMF=∠AME,∠CNF=∠CNE,∴∠AMF+∠CNF=(∠AME+∠CNE)=40°,∵FH∥AB∥CD,∴∠MFH=∠AMF,∠NFH=∠CNF,∴∠MFN=∠MFH+∠NFH=∠AMF+∠CNF=40°,如图,∵EG∥AB∥CD,∴∠BME=∠MEG,∠DNE=∠NEG,∴∠BME+∠DNE=∠MEG+∠NEG=∠MEN=80°,∴∠AME+∠CNE=360°-(∠BME+∠DNE)=280°∵∠AME的角平分线与∠CNE的角平分线交于点F,∴∠AMF=∠AME,∠CNF=∠CNE,∴∠AMF+∠CNF=(∠AME+∠CNE)=140°,∵FH∥AB∥CD,∴∠MFH=∠AMF,∠NFH=∠CNF,∴∠MFN=∠MFH+∠NFH=∠AMF+∠CNF=140°.综上所述:∠MFN的度数为40°或140°.故答案为:40°或140°.【点评】本题主要考查了平行线的性质,解决本题的关键是掌握平行线的性质.22.已知直线l1//l2,A是l1上的一点,B是l2上的一点,直线l3和直线l1,l2交于C和D,直线CD上有一点P.(1)如果P点在C,D之间运动时,问∠PAC,∠APB,∠PBD有怎样的数量关系?请说明理由.(2)若点P在C,D两点的外侧运动时(P点与C,D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?(请直接写出答案,不需要证明)【标准答案】(1);(2)当点在直线上方时,;当点在直线下方时,.【思路指引】(1)过点作,由“平行于同一条直线的两直线平行”可得出,再由“两直线平行,内错角相等”得出、,再根据角与角的关系即可得出结论;(2)按点的两种情况分类讨论:①当点在直线上方时;②当点在直线下方时,同理(1)可得、,再根据角与角的关系即可得出结论.【详解详析】解:(1).过点作,如图1所示.,,,,,,.(2)结论:当点在直线上方时,;当点在直线下方时,.①当点在直线上方时,如图2所示.过点作.,,,,,,.②当点在直线下方时,如图3所示.过点作.,,,,,,.【名师指路】本题考查了平行线的性质以及角的计算,解题的关键是根据“两直线平行,内错角相等”找到相等的角.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键.23.如图,,点E在直线AB,CD内部,且.(1)如图1,连接AC,若AE平分,求证:平分;(2)如图2,点M在线段AE上,①若,当直角顶点E移动时,与是否存在确定的数量关系?并说明理由;②若(为正整数),当直角顶点E移动时,与是否存在确定的数量关系?并说明理由.【标准答案】(1)见解析;(2)①∠BAE+∠MCD=90°,理由见解析;②∠BAE+∠MCD=90°,理由见解析.【思路指引】(1)根据平行的性质可得∠BAC+∠DCA=180°,再根据可得∠EAC+∠ECA=90°,根据AE平分∠BAC可得∠BAE=∠EAC,等量代换可得∠ECD+∠EAC=90°,继而求得∠DCE=∠ECA;(2)①过E作EF∥AB,先利用平行线的传递性得出EF∥AB∥CD,再利用平行线的性质及已知条件可推得答案;②过E作EF∥AB,先利用平行线的传递性得出EF∥AB∥CD,再利用平行线的性质及已知条件可推得答案.【详解详析】(1)解:因为,所以∠BAC+∠DCA=180°,因为,所以∠EAC+∠ECA=90°,因为AE平分∠BAC,所以∠BAE=∠EAC,所以∠BAE+∠DCE=90°,所以∠EAC+∠DCE=90°,所以∠DCE=∠ECA,所以CE平分∠ACD;(2)①∠BAE与∠MCD存在确定的数量关系:∠BAE+∠MCD=90°,理由如下:过E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE,∵∠E=90°,∴∠BAE+∠ECD=90°,∵∠MCE=∠ECD,∴∠BAE+∠MCD=90°;②∠BAE与∠MCD存在确定的数量关系:∠BAE+∠MCD=90°,理由如下:过E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE,∵∠E=90°,∴∠BAE+∠ECD=90°,∵∠MCE=∠ECD,∴∠BAE+∠MCD=90°.【名师指路】本题主要考查平行线的性质和角平分线的定义,解决本题的关键是要添加辅助线利用平行性质.24.(1)已知:如图(a),直线.求证:;(2)如图(b),如果点C在AB与ED之外,其他条件不变,那么会有什么结果?你还能就本题作出什么新的猜想?【标准答案】(1)见解析;(2)当点C在AB与ED之外时,,见解析【思路指引】(1)由题意首先过点C作CF∥AB,由直线AB∥ED,可得AB∥CF∥DE,然后由两直线平行,内错角相等,即可证得∠ABC+∠CDE=∠BCD;
(2)根据题意首先由两直线平行,内错角相等,可得∠ABC=∠BFD,然后根据三角形外角的性质即可证得∠ABC-∠CDE=∠BCD.【详解详析】解:(1)证明:过点C作CF∥AB,
∵AB∥ED,
∴AB∥ED∥CF,
∴∠BCF=∠ABC,∠DCF=∠EDC,
∴∠ABC+∠CDE=∠BCD;
(2)结论:∠ABC-∠CDE=∠BCD,
证明:如图:
∵AB∥ED,
∴∠ABC=∠BFD,
在△DFC中,∠BFD=∠BCD+∠CDE,
∴∠ABC=∠BCD+∠CDE,
∴∠ABC-∠CDE=∠BCD.若点C在直线AB与DE之间,猜想,∵AB∥ED∥CF,∴∴.【名师指路】本题考查的是平行线的性质及三角形外角的性质,熟练掌握平行线的性质是解答本题的关键,注意掌握辅助线的作法.25.已知AB∥CD,线段EF分别与AB,CD相交于点E,F.(1)请在横线上填上合适的内容,完成下面的解答:如图1,当点P在线段EF上时,已知∠A=35°,∠C=62°,求∠APC的度数;解:过点P作直线PH∥AB,所以∠A=∠APH,依据是;因为AB∥CD,PH∥AB,所以PH∥CD,依据是;所以∠C=(),所以∠APC=()+()=∠A+∠C=97°.(2)当点P,Q在线段EF上移动时(不包括E,F两点):①如图2,∠APQ+∠PQC=∠A+∠C+180°成立吗?请说明理由;②如图3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,请直接写出∠M,∠A与∠C的数量关系.【标准答案】(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.【思路指引】(1)根据平行线的判定与性质即可完成填空;(2)结合(1)的辅助线方法即可完成证明;(3)结合(1)(2)的方法,根据∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可证明∠PMQ,∠A与∠C的数量关系.【详解详析】解:过点P作直线PH∥AB,所以∠A=∠APH,依据是两直线平行,内错角相等;因为AB∥CD,PH∥AB,所以PH∥CD,依据是平行于同一条直线的两条直线平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:过点P作直线PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如图3,过点P作直线PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【名师指路】考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键.26.已知直线AM、CN和点B在同一平面内,且AM∥CN,AB⊥BC.(1)如图1,求∠A和∠C之间的数量关系;(2)如图2,若BD⊥AM,垂足为D,求证:∠ABD=∠C;(3)如图3,已知点D、E、F都在直线AM上,且∠ABD=∠NCB,BF平分∠DBC,BE平分∠ABD.若∠FCB+∠NCF=180°,∠BFC=3∠DBE,请直接写出∠EBC的度数.
【标准答案】(1)∠A+∠C=90°;(2)见解析;(3)∠EBC=105°.【思路指引】(1)通过平行线性质和直角三角形内角关系求解.(2)画辅助平行线找角的联系.(3)利用(2)的结论,结合角平分线性质求解.【详解详析】解:(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠AOB=90°,∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵AM∥CN,∴CN∥BG,∴∠CBG=∠BCN,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,∵∠ABD=∠NCB,∴∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∵BG∥DM,∴∠DFB=∠GBF=β,∴∠AFC=∠BFC+∠DFB=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【名师指路】本题考查平行线性质,三角形内角和定理,角平分线的定义,画辅助线,找到角的关系是求解本题的关键.27.已知AB∥CD,∠ABE与∠CDE的角分线相交于点F.(1)如图1,若BM、DM分别是∠ABF和∠CDF的角平分线,且∠BED=100°,求∠M的度数;(2)如图2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度数;(3)若∠ABM=∠ABF,∠CDM=∠CDF,请直接写出∠M与∠BED之间的数量关系【标准答案】(1)65°;(2);(3)2n∠M+∠BED=360°【思路指引】(1)首先作EG∥AB,FH∥AB,连结MF,利用平行线的性质可得∠ABE+∠CDE=260°,再利用角平分线的定义得到∠ABF+∠CDF=130°,从而得到∠BFD的度数,再根据角平分线的定义和三角形外角的性质可求∠M的度数;(2)先由已知得到∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)得∠ABE+∠CDE=360°-∠BED,∠M=∠ABM+∠CDM,等量代换即可求解;(3)由(2)的方法可得到2n∠M+∠BED=360°.【详解详析】解:(1)如图1,作,,连结,,,,,,,,,,和的角平分线相交于,,,、分别是和的角平分线,,,,;(2)如图1,,,,,与两个角的角平分线相交于点,,,,,,;(3)由(2)结论可得,,,则.【名师指路】本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.28.已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.【标准答案】(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°【思路指引】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解;
(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,进而可求解;
(3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解.【详解详析】解:(1)过E作EH∥AB,如图1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如图2,过F作FH∥AB,∴∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 接商稿流程合同范例
- 承接景观雕塑工程合同范例
- 橱柜招商加盟合同范例
- 医学影像技术练习题与参考答案
- 2025年乌鲁木齐货运丛业资格证试题及答案
- 涂料合同范例范例
- 2025年贵港货运资格证安检考试题
- 2025年乐山道路运输从业资格考试系统
- 汽车美容劳务合同范例
- 2025年三明货运从业资格证在哪里练题
- 2024年光伏发电项目融资贷款合同
- E英语教程(第二版)1教学课件Unit-3
- 高铁乘务礼仪培训
- 新能源汽车发展趋势报告-2024
- 二年级上册语文期末必考古诗、课文总复习
- 文书模板-《厂房光伏租赁合同》
- 工业自动化生产线操作手册
- 2024年就业协议书样本
- 物理学与人类文明学习通超星期末考试答案章节答案2024年
- 文化遗产与自然遗产学习通超星期末考试答案章节答案2024年
- 实验室安全准入教育学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论