版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
-2024学年雅礼中学高一下学期4月第一次月考试卷一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.1.命题“,”的否定为(
)A., B.,C., D.,2.设复数(其中a,,i为虚数单位),则“”是“z为纯虚数”的(
)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.若角的终边上有一点,则a的值为(
)A. B. C. D.4.函数在区间上的图象大致为(
)A.B.C.D.5.按斜二测画法得到,如图所示,其中,,那么的形状是()A.等边三角形 B.直角三角形C.腰和底边不相等的等腰三角形 D.三边互不相等的三角形6.已知实数满足,设,则(
)A. B. C. D.7.已知正三角形ABC的边长为4,点P在边BC上,则的最小值为(
)A.2 B.1 C. D.8.在中,为边上一点,,且的面积为,则(
)A. B. C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列命题不正确的是(
).A.棱台的侧棱长可以不相等,但上、下底面一定相似B.有一个面是多边形,其余各面都是三角形的几何体是棱锥C.若,直线平面,直线平面,且,则D.若条直线中任意两条共面,则它们共面10.已知是复数,且为纯虚数,则(
)A. B.C.在复平面内对应的点在实轴上 D.的最大值为11.已知锐角三个内角A,B,C的对应边分别为a,b,c,且,c=2.则下列结论正确的是(
)A.的面积最大值为2 B.的取值范围为C. D.的取值范围为三、填空题:本题共3小题,每小题5分,共15分.12.已知向量,且,则_________.13.已知,则的最小值为.14.已知,,若,或,则的取值范围是四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(1)已知正四棱锥的底面边长是6,侧棱长为5,求该正四棱锥的体积(2)如图(单位:cm),求下图中阴影部分绕AB旋转一周所形成的几何体的体积.
16.在中,角所对的边分别为,.(1)求的值;(2)若,点是的中点,且,求的面积.17.已知函数.(1)求函数在上的单调递减区间;(2)若在区间上恰有两个零点,,求的值.18.已知函数对任意实数m、n都满足等式,当时,,且.(1)判断的奇偶性;(2)判断的单调性,求在区间上的最大值;(3)是否存在实数a,对于任意的,,使得不等式恒成立.若存在,求出a的取值范围;若不存在,请说明理由.19.如果函数满足以下两个条件,我们就称为型函数.①对任意的,总有;②当时,总有成立.(1)记,求证:为型函数;(2)设,记,若是型函数,求的取值范围;(3)是否存在型函数满足:对于任意的,都存在,使得等式成立?请说明理由.1.D【分析】利用全称量词命题的否定是存在量词命题即可解答.【详解】因为全称量词命题的否定是存在量词命题,故命题“,”的否定为,.故选:D.2.B【分析】根据复数的分类,结合充分条件、必要条件的判定方法,即可求解.【详解】由复数当时,复数为纯虚数,所以充分性不成立;反之:若复数为纯虚数,则成立,所以必要性成立,所以“”是“z为纯虚数”的必要不充分条件.故选:B.3.A【分析】利用任意角的三角函数的定义结合诱导公式求解.【详解】因为角的终边上有一点,所以,又,所以,所以.故选:A4.A【分析】根据函数奇偶性结合当时函数值的符号性分析判断.【详解】∵,即,∴为偶函数;又∵当时,则,故,∴;综上所述:A正确,B、C、D错误.故选:A.5.A【分析】根据直观图得原图,计算可得答案.【详解】原如图所示:由斜二测画法的规则可知,,,,所以,故为等边三角形.故选:A.6.D【分析】根据的单调性判断大小,再比较大小得解.【详解】因为,所以,又为减函数,所以,即,又,故,所以,故选:D.7.D【分析】选基底,用基向量表示出所求,由二次函数知识可得.【详解】记,因为,所以.故选:D8.A【分析】由面积公式求出,即可得到为等腰三角形,则,在中由正弦定理求出,即可求出,最后由利用两角差的正弦公式计算可得.【详解】因为,解得,所以为等腰三角形,则,在中由正弦定理可得,即,解得,因为,所以为锐角,所以,所以.故选:A9.BD【分析】直接根据棱台、棱锥的定义判断选项A和B,选项C用点、线、面公理判断即可,选项D举反例即可判断.【详解】对于A,棱台的上、下底面相似,但侧棱长不一定相等,故A正确;对于B,棱锥的定义为:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫棱锥.而有一个面是多边形,其余各面都是三角形的几何体也可能是组合体,与棱锥的定义相矛盾,故B错误;对于C,因为直线平面,直线平面,且,所以面,且面,又,所以,故C正确;对于D,反例:正方体的侧棱任意两条都共面,但这4条侧棱却不共面,故D错误.故选:BD.10.ABD【分析】先设,代入中化简,根据为纯虚数得出:,且即可判断选项A、C;由可判断选项B;根据复数的几何意义可判断选项D.【详解】由题意设,则.因为为纯虚数,所以,且,即,且.因此,故选项A正确;,所以故选项B正确;因为在复平面内对应的点为,所以在复平面内对应的点不在实轴上,故选项C错误;因为表示圆上的点到点的距离,且最大距离为,故选项D正确.故选:ABD.11.BCD【分析】A选项,由余弦定理和基本不等式求出面积的最大值;B选项,由正弦定理得到,结合平面向量数量积公式得到,根据为锐角三角形得到,从而得到的取值范围;C选项,由正弦定理和正弦和角公式可得;D选项,变形得到,由,求出答案.【详解】A选项,由余弦定理得,即,所以,由基本不等式得,当且仅当时,等号成立,此时为锐角三角形,满足要求,故,解得,故,A错误;B选项,由正弦定理得,所以,,因为为锐角三角形,所以,,解得,则,,,B正确;C选项,,由正弦定理得,C正确;D选项,,由C选项可知,所以,故,D正确.故选:BCD12.【分析】利用向量平行的坐标表示求出,再根据向量的坐标运算求出模长.【详解】因为,所以,解得,所以,所以,所以.故答案为:13.##【分析】根据两角和的正切公式化简可得,再根据基本不等式求解即可.【详解】因为,则,可得,即,且,整理得,又因为,当且仅当时,等号成立,即,整理得,解得或(舍去),所以的最小值为,当且仅当时取等号.故答案为:14.【分析】首先分析在时,,则舍去此种情况,再对m进行进行讨论即可.【详解】首先看没有参数,从入手,显然时,;当时,,而对,或成立即可,故只要时,(*)恒成立即可,当时,,不符合(*)式,舍去;当时,由得,并不对成立,舍去;当时,由,注意,故,所以,即,又,故,所以又,故,综上,的取值范围是,故答案为:.15.(1);(2)【分析】(1)设为与交点,则平面,进而根据几何关系得,再计算几何体的体积即可;(2)根据圆台的体积与球的体积公式求解即可.【详解】解:(1)如图,正四棱锥中,设为与交点,所以由正四棱锥的性质得平面,所以,因为正四棱锥的底面边长是6,侧棱长为5,所以,,所以,即正四棱锥的高为所以,该正四棱锥的体积为
(2)根据题意,图中阴影部分绕AB旋转一周所形成的几何体为圆台中挖去一个半径为的半球构成的组合体.因为圆台的体积为,半球的体积为,所以,所求几何体的体积为.16.(1);(2).【分析】(1)根据正弦定理和二倍角的余弦公式得;(2)根据同角三角函数关系求出,再利用余弦定理求出值,最后利用三角形面积公式即可.【详解】(1)由正弦定理得:,,则,,不等于0,.(2),,所以,联立,,在中,由余弦定理得:①在中,由余弦定理得:②由①②式得:故,.17.(1)(2)【分析】(1)利用三角函数的性质,结合整体代入法即可得解;(2)利用三角函数的对称性得到,由题设条件得到,从而利用诱导公式即可得解.【详解】(1)对于,令,解得,因为,当时,;当时,;所以在上的单调递减区间为.(2)因为在区间上恰有2个零点,所以在有两个根,令,解得,所以当时,函数图像的对称轴为,所以,则,又,则,所以.18.(1)奇函数;(2)为上的减函数;在上的最大值为6;(3)存在,实数a的取值范围为.【分析】(1)赋值法得到,,得到函数的奇偶性;(2)先由时,利用赋值法得到函数单调递减,再用赋值法和奇偶性得到,从而得到在区间上的最大值;(3)先根据单调性得到,问题转化为,恒成立,令,为一次函数,得到不等式组,求出实数a的取值范围.【详解】(1)取,则,∴,取,,则,∴对任意恒成立,∴为奇函数;(2)任取且,则,因为,故,令,则有,即,∵时,,故时,,∴,∴.故为上的减函数.∴,,∵,,令,则,故,因为令,则,即,由(1)知:为奇函数,故,故,解得:,故,故在上的最大值为6;(3)∵在上是减函数,∴,∵,对所有,恒成立.∴,恒成立;即,恒成立,令,则,即,解得:或.∴实数a的取值范围为.19.(1)证明见解析(2)(3)存在,理由见解析【分析】(1)证明函数满足型函数的定义即可;(2)根据是型函数,则由其满足条件①推出,再结合其满足条件②得关于b的不等式,利用构造函数,结合函数最值,即可求得答案;(3)举出具体函数,说明其满足型函数的定义,即可得结论.【详解】(1)当时,,当,,时,,,则,,,,为型函数.(2)当时,由得,当,,时,,,由,得,即,即,即,令,则对称轴,所以在上的最小值为,只要,则,因为,所以.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 化工消防安全工作总结(6篇)
- 污染治理产业政策研究-洞察分析
- 休闲时间分配与生活满意度-洞察分析
- 无线鼠标技术发展-洞察分析
- 网络安全技术创新-第5篇-洞察分析
- 游戏版权保护策略-洞察分析
- 微种植体支抗的骨整合机制-洞察分析
- 应急响应与处置能力建设-洞察分析
- 网络安全法律法规-第16篇-洞察分析
- 《真核生物真菌》课件
- 2024-2025学年人教版八年级上册数学期末押题卷(含答案)
- 2024年考研(英语一)真题及参考答案
- 王守仁英国文学选读课后答案
- (完整版)20以内带括号加减法口算练习
- 奥星-计算机化系统验证要点分析与校准管理
- 北京九强生物技术股份有限公司新建研发中心及参考试验室项目环境影响评价报告书简本
- 新浙美版三年级上册美术教案
- 中国国际商会入会申请表
- 裂隙灯显微镜的原理
- 心脏彩超电子病例检查模块
- 洪水计算(推理公式法)
评论
0/150
提交评论