




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
关于局部线性化与微分4.3.1微分的概念1.引例问此薄片面积改变了多少?设薄片边长为x,面积为A(x),面积的增量为关于△x
的线性主部高阶无穷小时为故当边长从在取得增量时,变到一块正方形金属薄片受温度变化的影响,边长由其第2页,共28页,2024年2月25日,星期天2.“以直代曲”的定量描述当函数在处可导且时,所以当x充分接近x0时,有以直代曲:局部线性化:\\4.3.1微分的概念第3页,共28页,2024年2月25日,星期天
比较函数在附近比较函数的增量与该点切线纵坐标的增量。例1\\4.3.1微分的概念第4页,共28页,2024年2月25日,星期天2.“以直代曲”的定量描述当函数在处可导且时,所以当x充分接近x0时,有以直代曲:局部线性化:\\4.3.1微分的概念第5页,共28页,2024年2月25日,星期天即内有定义,处的增量可以表示为3.微分的定义或,定义4.3.1设函数在的某邻域则称函数在处可微(或可微分),称为在处的微分,记为在一般点x处的微分,简记为若存在与无关的常数,使函数在点\\4.3.1微分的概念第6页,共28页,2024年2月25日,星期天
设函数在的某邻域内有定义,则函数在可微的充要条件是
在处可导,且在点处的微分为或函数可微的条件当,有定理4.3.1\\4.3.1微分的概念第7页,共28页,2024年2月25日,星期天
设,证明在任何点处可微,且.
对任何,有例2证此时,所以,得,即一般地,\\4.3.1微分的概念第8页,共28页,2024年2月25日,星期天从而微分形式可以写成由此得到,或若和互为反函数,则有对复合函数\\4.3.1微分的概念第9页,共28页,2024年2月25日,星期天和,并求在处的局部线性化例3解,,所以,在点处的局部线性化函数为因为已知函数,求函数.\\4.3.1微分的概念第10页,共28页,2024年2月25日,星期天
函数的增量是曲线的纵坐标的增量,它的微分是对应的切线的纵坐标的增量,这两者的差是横坐标增量的高阶无穷小。4.微分的几何意义——对应切线的纵坐标的增量。微分的几何意义\\4.3.1微分的概念第11页,共28页,2024年2月25日,星期天5.基本初等函数的微分公式根据函数微分的表达式函数的微分等于函数的导数乘以自变量的微分.由此可以得到基本初等函数的微分公式。例如:\\4.3.1微分的概念第12页,共28页,2024年2月25日,星期天4.3.2微分法则与微分不变性设函数在处可导,定理4.3.2这里为书写方便将简记为.(3).(2);处可微,且(1);(四则运算)则、和在第13页,共28页,2024年2月25日,星期天定理4.3.3(复合运算)其中和均可微,则函数
设有复合函数,也可微,且
因此,无论是自变量,还是中间变量,微分公式微分形式的不变性.的形式保持不变,将此性质称为\\4.3.2微分法则与微分不变性第14页,共28页,2024年2月25日,星期天求函数的微分.例4解\\4.3.2微分法则与微分不变性第15页,共28页,2024年2月25日,星期天例5解(1)将下面给出的微分形式写成某一函数的微分:(1);(2);(2).(3)(4)(3);(4).\\4.3.2微分法则与微分不变性第16页,共28页,2024年2月25日,星期天4.3.3微分在近似计算中的应用,有近似公式若函数在处可微,则对于充分小它说明:用线性函数来近似时,所产生的误差是的高阶无穷小,即第17页,共28页,2024年2月25日,星期天使用原则:4.3.3微分在近似计算中的应用特别当很小时,第18页,共28页,2024年2月25日,星期天利用微分计算的近似值。例6函数为.设解则利用公式函数为则利用公式得\\4.3.3微分在近似计算中的应用第19页,共28页,2024年2月25日,星期天例7证
令,则由近似公式有证明近似公式,由此公式计算的近似值.并通过图形观察,考察当时,x
应在什么范围取值?\\4.3.3微分在近似计算中的应用第20页,共28页,2024年2月25日,星期天,下面估计使不等式成立的的范围\\4.3.3微分在近似计算中的应用第21页,共28页,2024年2月25日,星期天常见的近似公式有:这里要求.(1)(2)(3)(4)(5)\\4.3.3微分在近似计算中的应用第22页,共28页,2024年2月25日,星期天例8解将麦克风的插头视为圆柱形,其截面半径,长,为了提高它的导电性能,要在插头的侧面镀上一层厚为的纯铜,试估算一下镀一个这样的插头需要多少克铜?(铜的比重为)用初等方法完全可以解决这个问题,所需要的铜为不过此时计算量较大.用微分的方法来估算\\4.3.3微分在近似计算中的应用第23页,共28页,2024年2月25日,星期天因为当较小时有.由于当,,时,所以,镀一个这样的插头估计需要纯铜例8将麦克风的插头视为圆柱形,其截面半径,长,为了提高它的导电性能,要在插头的侧面镀上一层厚为的纯铜,试估算一下镀一个这样的插头需要多少克铜?(铜的比重为)\\4.3.3微分在近似计算中的应用第24页,共28页,2024年2月25日,星期天内容小结与作业1.微分概念
微分的定义及几何意义
可导可微2.微分运算法则微分形式不变性:(u
是自变量或中间变量)3.微分的应用——近似计算第25页,共28页,2024年2月25日,星期天2.
设由方程确定,求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗质量保证框架合同
- 深度分析:商业合同纠纷中的合同履行不当问题
- 合同模板之建筑材料供应合同
- 牡丹贷记卡:动产质押正式合同
- 长期外汇借款合同模板
- 标准员工雇佣合同样本
- 建筑幕墙安装工程合同样本大全
- 学生实习安全责任合同书
- 借款合同还款确认书
- 因感情破裂终止婚姻关系双方合同
- 苏教版二年级数学下册第一单元第一课时
- 二年级下册科学考点归纳
- 债权法总论课件
- 医院先进科室、先进个人评选办法
- 新部编版四年级下册道德与法治全册优秀教学课件(1-12课)
- 港口危险货物安全管理人员机考试题库(含答案)
- 门诊医师出诊申请表(2022版)
- 材料进场检验项目清单
- 开学第一课学生心理调适家长会PPT
- (版)九年级化学学情分析报告
- 口腔科四手操作[]通用课件
评论
0/150
提交评论