2024年中考数学复习(全国版)第五章 四边形真题测试(提升卷)(解析版)_第1页
2024年中考数学复习(全国版)第五章 四边形真题测试(提升卷)(解析版)_第2页
2024年中考数学复习(全国版)第五章 四边形真题测试(提升卷)(解析版)_第3页
2024年中考数学复习(全国版)第五章 四边形真题测试(提升卷)(解析版)_第4页
2024年中考数学复习(全国版)第五章 四边形真题测试(提升卷)(解析版)_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第五章四边形章节测试(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(2023·湖南永州·统考中考真题)下列多边形中,内角和等于的是(

)A.

B.

C.

D.

【答案】B【分析】根据n边形内角和公式分别求解后,即可得到答案【详解】解:A.三角形内角和是,故选项不符合题意;B.四边形内角和为,故选项符合题意;C.五边形内角和为,故选项不符合题意;D.六边形内角和为,故选项不符合题意.故选:B.【点睛】此题考查了n边形内角和,熟记n边形内角和公式是解题的关键.2.(2023·湖南常德·统考中考真题)如图1,在正方形中,对角线相交于点O,E,F分别为,上的一点,且,连接.若,则的度数为(

)

A. B. C. D.【答案】C【分析】首先根据正方形的性质得到,,然后结合得到,然后证明出,最后利用三角形内角和定理求解即可.【详解】∵四边形是正方形∴,∵∴,∴∴又∵,∴∴∴∴故选:C.【点睛】此题考查了正方形的性质,全等三角形的性质和判定,等腰直角三角形三角形的性质等知识,解题的关键是熟练掌握以上知识点.3.(2023·内蒙古通辽·统考中考真题)如图,用平移方法说明平行四边形的面积公式时,若平移到,,,则的平移距离为(

A.3 B.4 C.5 D.12【答案】B【分析】根据平移的方向可得,平移到,则点与点重合,故的平移距离为的长.【详解】解:用平移方法说明平行四边形的面积公式时,将平移到,故平移后点与点重合,则的平移距离为,故选:B.【点睛】本题考查了平移的性质,熟练掌握平移的性质是解题的关键.4.(2023·浙江·统考中考真题)如图,在菱形中,,则的长为(

A. B.1 C. D.【答案】D【分析】连接与交于O.先证明是等边三角形,由,得到,,即可得到,利用勾股定理求出的长度,即可求得的长度.【详解】解:连接与交于O.

∵四边形是菱形,∴,,,,∵,且,∴是等边三角形,∵,∴,,∴,∴,∴,故选:D.【点睛】此题主要考查了菱形的性质、勾股定理、等边三角形的判定和性质、角所对直角边等于斜边的一半,关键是熟练掌握菱形的性质.5.(2023·四川成都·统考中考真题)如图,在中,对角线与相交于点,则下列结论一定正确的是(

A. B. C. D.【答案】B【分析】根据平行四边形的性质逐项分析判断即可求解.【详解】∵四边形是平行四边形,对角线与相交于点,A.,不一定成立,故该选项不正确,不符合题意;

B.,故该选项正确,符合题意;C.,不一定成立,故该选项不正确,不符合题意;

D.,不一定成立,故该选项不正确,不符合题意;故选:B.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.6.(2023·浙江宁波·统考中考真题)如图,以钝角三角形的最长边为边向外作矩形,连结,设,,的面积分别为,若要求出的值,只需知道(

)

A.的面积 B.的面积 C.的面积 D.矩形的面积【答案】C【分析】过点作,交的延长线于点,的延长线于点,易得:,利用矩形的性质和三角形的面积公式,可得,再根据,得到,即可得出结论.【详解】解:过点作,交的延长线于点,的延长线于点,

∵矩形,∴,∴,∴四边形为矩形,∴,∴,∴,又,∴,∴只需要知道的面积即可求出的值;故选C.【点睛】本题考查矩形的性质,求三角形的面积.解题的关键是得到7.(2023·湖南·统考中考真题)如图所示,在矩形中,,与相交于点O,下列说法正确的是(

A.点O为矩形的对称中心 B.点O为线段的对称中心C.直线为矩形的对称轴 D.直线为线段的对称轴【答案】A【分析】由矩形是中心对称图形,对称中心是对角线的交点,线段的对称中心是线段的中点,矩形是轴对称图形,对称轴是过一组对边中点的直线,从而可得答案.【详解】解:矩形是中心对称图形,对称中心是对角线的交点,故A符合题意;线段的对称中心是线段的中点,故B不符合题意;矩形是轴对称图形,对称轴是过一组对边中点的直线,故C,D不符合题意;故选A【点睛】本题考查的是轴对称图形与中心对称图形的含义,矩形的性质,熟记矩形既是中心对称图形也是轴对称图形是解本题的关键.8.(2021·浙江宁波市·中考真题)如图是一个由5张纸片拼成的,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为,另两张直角三角形纸片的面积都为,中间一张矩形纸片的面积为,与相交于点O.当的面积相等时,下列结论一定成立的是()A. B. C. D.【答案】A【分析】根据△AED和△BCG是等腰直角三角形,四边形ABCD是平行四边形,四边形HEFG是矩形可得出AE=DE=BG=CG=a,HE=GF,GH=EF,点O是矩形HEFG的中心,设AE=DE=BG=CG=a,HE=GF=b,GH=EF=c,过点O作OP⊥EF于点P,OQ⊥GF于点Q,可得出OP,OQ分别是△FHE和△EGF的中位线,从而可表示OP,OQ的长,再分别计算出,,进行判断即可【详解】解:由题意得,△AED和△BCG是等腰直角三角形,∴∵四边形ABCD是平行四边形,∴AD=BC,CD=AB,∠ADC=∠ABC,∠BAD=∠DCB∴∠HDC=∠FBA,∠DCH=∠BAF,∴△AED≌△CGB,△CDH≌ABF∴AE=DE=BG=CG∵四边形HEFG是矩形∴GH=EF,HE=GF设AE=DE=BG=CG=a,HE=GF=b,GH=EF=c过点O作OP⊥EF于点P,OQ⊥GF于点Q,∴OP//HE,OQ//EF∵点O是矩形HEFG的对角线交点,即HF和EG的中点,∴OP,OQ分别是△FHE和△EGF的中位线,∴,∵∵∴,即而,所以,,故选项A符合题意,∴,故选项B不符合题意,而于都不一定成立,故都不符合题意,故选:A【点睛】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系.9.(2021·浙江温州市·中考真题)由四个全等的直角三角形和一个小正方形组成的大正方形如图所示.过点作的垂线交小正方形对角线的延长线于点,连结,延长交于点.若,则的值为()A. B. C. D.【答案】C【分析】如图,设BH交CF于P,CG交DF于Q,根据题意可知BE=PC=DF,AE=BP=CF,根据可得BE=PE=PC=PF=DF,根据正方形的性质可证明△FDG是等腰直角三角形,可得DG=FD,根据三角形中位线的性质可得PH=FQ,CH=QH=CQ,利用ASA可证明△CPH≌△GDQ,可得PH=QD,即可得出PH=BE,可得BH=,利用勾股定理可用BE表示长CH的长,即可表示出CG的长,进而可得答案.【详解】如图,设BH交CF于P,CG交DF于Q,∵由四个全等的直角三角形和一个小正方形组成的大正方形,∴BE=PC=DF,AE=BP=CF,∵,∴BE=PE=PC=PF=DF,∵∠CFD=∠BPC,∴DF//EH,∴PH为△CFQ的中位线,∴PH=QF,CH=HQ,∵四边形EPFN是正方形,∴∠EFN=45°,∵GD⊥DF,∴△FDG是等腰直角三角形,∴DG=FD=PC,∵∠GDQ=∠CPH=90°,∴DG//CF,∴∠DGQ=∠PCH,在△DGQ和△PCH中,,∴△DGQ≌△PCH,∴PH=DQ,CH=GQ,∴PH=DF=BE,CG=3CH,∴BH=BE+PE+PH=,在Rt△PCH中,CH==,∴CG=BE,∴.故选:C.【点睛】本题考查正方形的性质、全等三角形的判定与性质、三角形中位线的性质及勾股定理,熟练掌握相关性质及判定定理是解题关键.10.(2021·四川乐山市·中考真题)如图,已知点是菱形的对角线延长线上一点,过点分别作、延长线的垂线,垂足分别为点、.若,,则的值为()A. B. C.2 D.【答案】B【分析】根据菱形的基性质,得到∠PAE=30°,,利用勾股理求出AC=,则AP=+PC,PE=AP=+PC,由∠PCF=∠DCA=30°,得到PF=PC,最后算出结果.【详解】解:∵四边形ABCD是菱形且∠ABC=120°,AB=2,∴AB=BC=CD=DA=2,∠BAD=60°,AC⊥BD,∴∠CAE=30︒,∵AC⊥BD,∠CAE=30°,AD=2,∴AC=,∴AP=+PC,在直角△AEP中,∵∠PAE=30°,AP=+PC,∴PE=AP=+PC,在直角△PFC中,∵∠PCF=30°,∴PF=PC,∴=+PC-PC=,故选:B.【点睛】本题主要考查了菱形的基本性质、勾股定理的应用以及在直角三角形中,30°角所对的直角边等于斜边的一半,关键会在直角三角形中应用30°.二、填空题(本大题共10小题,每小题3分,共30分)11.(2023·新疆·统考中考真题)若正多边形的一个内角等于,则这个正多边形的边数是______.【答案】10【分析】本题需先根据已知条件设出正多边形的边数,再根据正多边形的计算公式得出结果即可.【详解】解:设这个正多边形是正n边形,根据题意得:,解得:.故答案为:10.【点睛】本题主要考查了正多边形的内角,在解题时要根据正多边形的内角公式列出式子是本题的关键.12.(2023·辽宁大连·统考中考真题)如图,在菱形中,为菱形的对角线,,点为中点,则的长为_______________.【答案】【分析】根据题意得出是等边三角形,进而得出,根据中位线的性质即可求解.【详解】解:∵在菱形中,为菱形的对角线,∴,,∵,∴是等边三角形,∵,∴,∵是的中点,点为中点,∴,故答案为:.【点睛】本题考查了菱形的性质,等边三角形的性质与判定,中位线的性质,熟练掌握以上知识是解题的关键.13.(2021·湖南中考真题)一个多边形的每个外角的度数都是60°,则这个多边形的内角和为______.【答案】720°【分析】多边形的外角和计算公式为:边数×外角的度数=360°,根据公式即可得出多边形的边数,然后再根据多边形的内角和公式求出它的内角和,n边形内角和等于(n-2)×180°.【详解】解:∵任何多边形的外角和是360°,此正多边形每一个外角都为60°,边数×外角的度数=360°,∴n=360°÷60°=6,∴此正多边形的边数为6,则这个多边形的内角和为(n-2)×180°,(6-2)×180°=720°,故答案为720°.【点睛】本题主要考查了多边形内角和及外角和定理,熟知“任何多边形的外角和是360°,n边形内角和等于(n-2)×180°”是解题的关键.14.(2021·四川泸州市·中考真题)如图,在边长为4的正方形ABCD中,点E是BC的中点,点F在CD上,且CF=3BF,AE,BF相交于点G,则AGF的面积是________.【答案】.【分析】延长AG交DC延长线于M,过G作GH⊥CD,交AB于N,先证明△ABE≌△MCE,由CF=3DF,可求DF=1,CF=3,再证△ABG∽△MFG,则利用相似比可计算出GN,再利用两三角形面积差计算S△DEG即可.【详解】解:延长AG交DC延长线于M,过G作GH⊥CD,交AB于N,如图,∵点E为BC中点,∴BE=CE,在△ABE和△MCE中,,∴△ABE≌△MCE(ASA),∴AB=MC=4,∵CF=3DF,CF+DF=4,∴DF=1,CF=3,FM=FC+CM=3+4=7,∵AB∥MF,∴∠ABG=∠MFG,∠AGB=∠MGF,∴△ABG∽△MFG,∴,∵,∴,S△AFG=S△AFB-S△AGB=,故答案为.【点睛】本题考查了正方形的性质,三角形全等判定与性质,三角形相似判定与性质,割补法求三角形面积,掌握正方形的性质,三角形全等判定与性质,三角形相似判定与性质,割补法求三角形面积,熟练运用相似比计算线段的长是解题关键.15.(2023·湖南·统考中考真题)如图,在平行四边形中,,,的平分线交于点E,则的长为_____________.【答案】2【分析】根据平行四边形的性质可得,则,再由角平分线的定义可得,从而求得,则,从而求得结果.【详解】解:∵四边形是平行四边形,∴,∴,∵的平分线交于点E,∴,∴,∴,∵,,∴,故答案为:2.【点睛】本题考查平行四边形的性质、角平分线的定义、等腰三角形的判定,掌握平行四边形的性质是解题的关键.16.(2023·浙江绍兴·统考中考真题)如图,在菱形中,,连接,以点为圆心,长为半径作弧,交直线于点,连接,则的度数是________.

【答案】或【分析】根据题意画出图形,结合菱形的性质可得,再进行分类讨论:当点E在点A上方时,当点E在点A下方时,即可进行解答.【详解】解:∵四边形为菱形,,∴,连接,①当点E在点A上方时,如图,∵,,∴,②当点E在点A下方时,如图,∵,,∴,故答案为:或.

【点睛】本题主要考查了菱形的性质,等腰三角形的性质,三角形的内角和以及三角形的外角定理,解题的关键是掌握菱形的对角线平分内角;等腰三角形两底角相等,三角形的内角和为;三角形的一个外角等于与它不相邻的两个内角之和.17.(2020•扬州)如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使得DF=14DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为【分析】根据题意和平行四边形的性质,可以得到BD和EF的比值,再根据三角形相似和最短距离,即可得到EG的最小值,本题得以解决.【解析】作CH⊥AB于点H,∵在▱ABCD中,∠B=60°,BC=8,∴CH=43,∵四边形ECGF是平行四边形,∴EF∥CG,∴△EOD∽△GOC,∴EOGO∵DF=14∴DEEF∴EDGC∴EOGO∴当EO取得最小值时,EG即可取得最小值,当EO⊥CD时,EO取得最小值,∴CH=EO,∴EO=43,∴GO=53,∴EG的最小值是93故答案为:93.18.(2020•哈尔滨)如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD=2BE,∠DAE=∠DEA,EO=1,则线段AE的长为.【分析】设BE=x,则CD=2x,根据菱形的性质得AB=AD=CD=2x,OB=OD,AC⊥BD,再证明DE=DA=2x,所以1+x=32x,解得x=2,然后利用勾股定理计算OA,再计算【解析】设BE=x,则CD=2x,∵四边形ABCD为菱形,∴AB=AD=CD=2x,OB=OD,AC⊥BD,∵∠DAE=∠DEA,∴DE=DA=2x,∴BD=3x,∴OB=OD=32∵OE+BE=BO,∴1+x=32x,解得x=即AB=4,OB=3,在Rt△AOB中,OA=4在Rt△AOE中,AE=12+(故答案为22.19.(2020•菏泽)如图,矩形ABCD中,AB=5,AD=12,点P在对角线BD上,且BP=BA,连接AP并延长,交DC的延长线于点Q,连接BQ,则BQ的长为.【分析】根据矩形的性质可得BD=13,再根据BP=BA可得DQ=DP=8,所以得CQ=3,在Rt△BCQ中,根据勾股定理即可得BQ的长.【解析】∵矩形ABCD中,AB=5,AD=12,∠BAD=∠BCD=90°,∴BD=AB∵BP=BA=5,∴PD=BD﹣BP=8,∵BA=BP,∴∠BAP=∠BPA=∠DPQ,∵AB∥CD,∴∠BAP=∠DQP,∴∠DPQ=∠DQP,∴DQ=DP=8,∴CQ=DQ﹣CD=DQ﹣AB=8﹣5=3,∴在Rt△BCQ中,根据勾股定理,得BQ=BC2故答案为:317.20.(2021·浙江金华市·中考真题)如图,在平面直角坐标系中,有一只用七巧板拼成的“猫”,三角形①的边BC及四边形②的边CD都在x轴上,“猫”耳尖E在y轴上.若“猫”尾巴尖A的横坐标是1,则“猫”爪尖F的坐标是___________.【答案】【分析】设大正方形的边长为2a,则大等腰直角三角形的腰长为,中等腰直角三角形的腰长为a,小等腰直角三角形的腰长为,小正方形的边长为,平行四边形的长边为a,短边为,用含有a的代数式表示点A的横坐标,表示点F的坐标,确定a值即可.【详解】设大正方形的边长为2a,则大等腰直角三角形的腰长为,中等腰直角三角形的腰长为a,小等腰直角三角形的腰长为,小正方形的边长为,平行四边形的长边为a,短边为,如图,过点F作FG⊥x轴,垂足为G,点F作FH⊥y轴,垂足为H,过点A作AQ⊥x轴,垂足为Q,延长大等腰直角三角形的斜边交x轴于点N,交FH于点M,根据题意,得OC==,CD=a,DQ=,∵点A的横坐标为1,∴+a+=1,∴a=;根据题意,得FM=PM=,MH=,∴FH==;∴MT=2a-,BT=2a-,∴TN=-a,∴MN=MT+TN=2a-+-a==,∵点F在第二象限,∴点F的坐标为(-,)故答案为:(-,).【点睛】本题考查了七巧板的意义,合理设出未知数,用未知数表示各个图形的边长,点AA的横坐标,点F的坐标是解题的关键.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(2023·浙江杭州·统考中考真题)如图,平行四边形的对角线相交于点,点在对角线上,且,连接,.

(1)求证:四边形是平行四边形.(2)若的面积等于2,求的面积.【答案】(1)见解析(2)1【分析】(1)根据平行四边形对角线互相平分可得,,结合可得,即可证明四边形是平行四边形;(2)根据等底等高的三角形面积相等可得,再根据平行四边形的性质可得.【详解】(1)证明:四边形是平行四边形,,,,,,又,四边形是平行四边形.(2)解:,,,四边形是平行四边形,.【点睛】本题考查平行四边形的判定与性质,解题的关键是掌握平行四边形的对角线互相平分.22.(2021·重庆中考真题)如图,在中,AB>AD.(1)用尺规完成以下基本作图:在AB上截取AE,使得AE=AD;作∠BCD的平分线交AB于点F.(保留作图痕迹,不写作法)(2)在(1)所作的图形中,连接DE交CF于点P,猜想△CDP按角分类的类型,并证明你的结论.【答案】(1)见解析;(2)直角三角形,理由见解析【分析】(1)直接利用角平分线的作法得出符合题意的答案;(2)先证明∠ADE=∠CDE,再利用平行线的性质“同旁内角互补”,得出∠CPD=90即可得出答案.【详解】解:(1)解:如图所示:E,F即为所求;(2)△CDP是直角三角形.∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC.∴∠CDE=∠AED,∠ADC+∠BCD=180°,∵AD=AE,∴∠ADE=∠AED.∴∠CED=∠ADE=∠ADC.∵CP平分∠BCD,∴∠DCP=∠BCD,∴∠CDE+∠DCP=90°.∴∠CPD=90°.∴△CDP是直角三角形.【点睛】本题主要考查了基本作图以及平行四边形的性质,三角形内角和定理,解题的关键是灵活运用所学知识解决问题.23.(2021·浙江金华市·中考真题)已知:如图,矩形的对角线相交于点O,.(1)求矩形对角线的长.(2)过O作于点E,连结BE.记,求的值.【答案】(1)4;(2)【分析】(1)根据矩形对角线的性质,得出△ABO是等腰三角形,且∠BOC=120°,即∠AOB=60°,则△ABO为等边三角形,即可求得对角线的长;(2)首先根据勾股定理求出AD,再由矩形的对角线的性质得出OA=OD,且OE⊥AD,则AE=AD,在Rt△ABE中即可求得.【详解】解:(1)∵四边形是矩形,是等边三角形,,所以.故答案为:4.(2)在矩形中,.由(1)得,.又在中,.故答案为:.【点睛】本题考查了矩形的对角线性质,等边三角形的判定,等腰三角形的三线合一以及在直角三角形中求锐角正切的知识点,灵活应用矩形对角线的性质是解题的关键.24.(2023·湖北十堰·统考中考真题)如图,的对角线交于点,分别以点为圆心,长为半径画弧,两弧交于点,连接.

(1)试判断四边形的形状,并说明理由;(2)请说明当的对角线满足什么条件时,四边形是正方形?【答案】(1)平行四边形,见解析;(2)且【分析】(1)根据平行四边形的性质,得到,根据两组对边分别相等的四边形是平行四边形判定即可.(2)根据对角线相等、平分且垂直的四边形是正方形判定即可.【详解】(1)四边形是平行四边形.理由如下:∵的对角线交于点,∴,∵以点为圆心,长为半径画弧,两弧交于点,∴∴四边形是平行四边形.(2)∵对角线相等、平分且垂直的四边形是正方形,∴且时,四边形是正方形.【点睛】本题考查了平行四边形的判定和性质,正方形的判定和性质,熟练掌握判定和性质是解题的关键.25.(2021·四川凉山彝族自治州·中考真题)如图,在四边形中,,过点D作于E,若.(1)求证:;(2)连接交于点,若,求DF的长.【答案】(1)见解析;(2)【分析】(1)过D作BC的垂线,交BC的延长线于点G,连接BD,证明四边形BEDG为正方形,得到条件证明△ADE≌△CDG,可得AD=CD;(2)根据∠ADE=30°,AD=6,得到AE,DE,从而可得BE,BG,设DF=x,证明△AEF∽△ABC,得到比例式,求出x值即可.【详解】解:(1)过D作BC的垂线,交BC的延长线于点G,连接BD,∵∠DEB=∠ABC=∠G=90°,DE=BE,∴四边形BEDG为正方形,∴BE=DE=DG,∠BDE=∠BDG=45°,∵∠ADC=90°,即∠ADE+∠CDE=∠CDG+∠CDE=90°,∴∠ADE=∠CDG,又DE=DG,∠AED=∠G=90°,∴△ADE≌△CDG(ASA),∴AD=CD;(2)∵∠ADE=30°,AD=6,∴AE=CG=3,DE=BE==,∵四边形BEDG为正方形,∴BG=BE=,BC=BG-CG=-3,设DF=x,则EF=-x,∵DE∥BC,∴△AEF∽△ABC,∴,即,解得:x=,即DF的长为.【点睛】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,正方形的判定和性质,勾股定理,解题的关键是作出辅助线,构造全等三角形.26.(2021·浙江绍兴市·中考真题)问题:如图,在中,,,,的平分线AE,BF分别与直线CD交于点E,F,求EF的长.答案:.探究:(1)把“问题”中的条件“”去掉,其余条件不变.①当点E与点F重合时,求AB的长;②当点E与点C重合时,求EF的长.(2)把“问题”中的条件“,”去掉,其余条件不变,当点C,D,E,F相邻两点间的距离相等时,求的值.【答案】(1)①10;②5;(2),,【分析】(1)①利用平行四边形的性质和角平分线的定义先分别求出,,即可完成求解;

②证明出即可完成求解;

(2)本小题由于E、F点的位置不确定,故应先分情况讨论,再根据每种情况,利用,以及点C,D,E,F相邻两点间的距离相等建立相等关系求解即可.【详解】(1)①如图1,四边形ABCD是平行四边形,,.平分,...同理可得:.点E与点F重合,.

②如图2,点E与点C重合,同理可证,∴▱ABCD是菱形,,点F与点D重合,.(2)情况1,如图3,可得,.情况2,如图4,同理可得,,又,.情况3,如图5,由上,同理可以得到,又,.综上:的值可以是,,.【点睛】本题属于探究型应用题,综合考查了平行四边形的性质、角平分线的定义、菱形的判定与性质等内容,解决本题的关键是读懂题意,正确画出图形,建立相等关系求解等,本题综合性较强,要求学生有较强的分析能力,本题涉及到的思想方法有分类讨论和数形结合的思想等.27.(2021·四川眉山市·中考真题)如图,在等腰直角三角形中,,,边长为2的正方形的对角线交点与点重合,连接,.(1)求证:;(2)当点在内部,且时,设与相交于点,求的长;(3)将正方形绕点旋转一周,当点、、三点在同一直线上时,请直接写出的长.【答案】(1)见详解;(2);(3)-1或+1【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论