




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省徐州市市区部分2024年数学八年级下册期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.不等式组的解集是()A. B. C. D.2.如图,∠CAB=∠DAB下列条件中不能使△ABC≌△ABD的是()A.∠C=∠D B.∠ABC=∠ABD C.AC=AD D.BC=BD3.如图,Rt△ABC中,∠ACB=90°,若AB=15,则正方形ADEC和正方形BCFG的面积之和为()A.150 B.200 C.225 D.无法计算4.如图,描述了林老师某日傍晚的一段生活过程:他晚饭后,从家里散步走到超市,在超市停留了一会儿,马上又去书店,看了一会儿书,然后快步走回家,图象中的平面直角坐标系中x表示时间,y表示林老师离家的距离,请你认真研读这个图象,根据图象提供的信息,以下说法错误的是()A.林老师家距超市1.5千米B.林老师在书店停留了30分钟C.林老师从家里到超市的平均速度与从超市到书店的平均速度是相等的D.林老师从书店到家的平均速度是10千米/时5.如图,菱形ABCD的对角线AC、BD相交于点O,过点C作CE⊥AD于点E,连接OE,若OB=8,S菱形ABCD=96,则OE的长为()A.2 B.2 C.6 D.86.如图,已知,那么添加下列一个条件后,仍然无法判定的是()A. B. C. D.7.一次函数的图象如图所示,当时,x的取值范围是A. B. C. D.8.一元二次方程的根是()A. B. C., D.,9.矩形与矩形如图放置,点共线,点共线,连接,取的中点,连接.若,则的长为A. B. C. D.10.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,则点C的纵坐标y与x的函数解析式是()A.y=x B.y=1﹣x C.y=x+1 D.y=x﹣1二、填空题(每小题3分,共24分)11.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为cm.12.如图,矩形纸片ABCD,AB=5,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE,DE分别交AB于点O,F,且OP=OF,则AF的值为______.13.如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则BF的长为______.14.若不等式组恰有两个整数解,则m的取值范围是__________.15.如图,在平面直角坐标系中,四边形AOBC是菱形.若点A的坐标是(6,8),则点C的坐标是_____.16.若在实数范围内有意义,则的取值范围是____________.17.如图,□的顶点的坐标为,在第一象限反比例函数和的图象分别经过两点,延长交轴于点.设是反比例函数图象上的动点,若的面积是面积的2倍,的面积等于,则的值为________。18.若分式的值为零,则x的值为______.三、解答题(共66分)19.(10分)为进一步改善民生,增强广大人民群众的幸福感,自2016年以来,我县加大城市公园的建设,2016年县政府投入城市公园建设经费约2亿元到2018年投入城市公园建设经费约2.88亿元,假设这两年投入城市公园建设经费的年平均增长率相同.(1)求这两年我县投入城市公园建设经费的年平均增长率;(2)若我县城市公园建设经费的投入还将保持相同的年平均增长率,请你预算2019年我县城市公园建设经费约为多少亿元?20.(6分)甲、乙两校派相同人数的优秀学生,参加县教育局举办的中小学生美文诵读决赛。比赛结束后,发现学生成绩分别是7分、8分、9分或10分(满分10分),核分员依据统计数据绘制了如下尚不完整的统计图表。根据这些材料,请你回答下列问题:甲校成绩统计表成绩7分8分9分10分人数1108(1)在图①中,“7分”所在扇形的圆心角等于_______(2)求图②中,“8分”的人数,并请你将该统计图补充完整。(3)经计算,乙校学生成绩的平均数是8.3分,中位数是8分。请你计算甲校学生成绩的平均数、中位数,并从平均数和中位数的角度分析哪个学校的成绩较好?(4)如果教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?21.(6分)如图,点为轴负半轴上的一个点,过点作轴的垂线,交函数的图像于点,交函数的图像于点,过点作轴的平行线,交于点,连接.(1)当点的坐标为(–1,0)时,求的面积;(2)若,求点的坐标;(3)连接和.当点的坐标为(,0)时,的面积是否随的值的变化而变化?请说明理由.22.(8分)如图,四边形ABCD是矩形,将一块正方形纸板OEFG如图1摆放,它的顶点O与矩形ABCD的对角线交点重合,点A在正方形的边OG上,现将正方形绕点O逆时针旋转,当点B在OG边上时,停止旋转,在旋转过程中OG交AB于点M,OE交AD于点N.
(1)开始旋转前,即在图1中,连接NC.
①求证:NC=NA(M);
②若图1中NA(M)=4,DN=2,请求出线段CD的长度.
(2)在图2(点B在OG上)中,请问DN、AN、CD这三条线段之间有什么数量关系?写出结论,并说明理由.
(3)试探究图3中AN、DN、AM、BM这四条线段之间有什么数量关系?写出结论,并说明理由.23.(8分)先化简,再求值:,其中a满足.24.(8分)已知:如图,△OAB,点O为原点,点A、B的坐标分别是(2,1)、(﹣2,4).(1)若点A、B都在一次函数y=kx+b图象上,求k,b的值;(2)求△OAB的边AB上的中线的长.25.(10分)问题:将边长为n(n≥2)的正三角形的三条边分别n等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有1+3=2边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有1+3+5=32=9探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为n(n≥2)的正三角形的三条边分别n等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.26.(10分)植树节来临之际,学校准备购进一批树苗,已知2棵甲种树苗和5棵乙种树苗共需113元;3棵甲种树苗和2棵乙种树苗共需87元.(1)求一棵甲种树苗和一棵乙种树苗的售价各是多少元;(2)学校准备购进这两种树苗共100棵,并且乙种树苗的数量不多于甲种树苗数量的2倍,请设计出最省钱的购买方案,并求出此时的总费用.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
分别求出各不等式的解集,再求出其公共解集即可.【详解】解:
解不等式①得:x⩽2,
解不等式②得:x>−3,
∴不等式组的解集为:−3<x⩽2,
故选:A.【点睛】本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2、D【解析】
根据题目中的已知条件AB=AB,∠CAB=∠DAB,再结合题目中所给选项中的条件,利用全等三角形的判定定理进行分析即可.【详解】有条件AB=AB,∠CAB=∠DAB,A.再加上∠C=∠D可利用AAS可证明△ABC≌△ABD,故此选项不合题意;B.再加上条件∠ABC=∠ABD可利用AAS可证明△ABC≌△ABD,故此选项不合题意;C.再加上条件AC=AD可利用SAS可证明△ABC≌△ABD,故此选项不符合题意;D.再加上条件BC=BD不能证明△ABC≌△ABD,故此选项合题意;故选:D.3、C【解析】
小正方形的面积为AC的平方,大正方形的面积为BC的平方,两正方形面积的和为AC2+BC2,对于Rt△ABC,由勾股定理得AB2=AC2+BC2,AB=15,故可以求出两正方形面积的和.【详解】正方形ADEC的面积为:
AC2
,
正方形BCFG的面积为:BC2
;
在Rt△ABC中,AB2
=
AC2+
BC2,AB=15,
则AC2
+
BC2
=
225cm2,故选:C.【点睛】此题考查勾股定理,熟记勾股定理的计算公式是解题的关键.4、D【解析】分析:根据图象中的数据信息进行分析判断即可.详解:A选项中,由图象可知:“林老师家距离超市1.5km”,所以A中说法正确;B选项中,由图象可知:林老师在书店停留的时间为;80-50=30(分钟),所以B中说法正确;C选项中,由图象可知:林老师从家里到超市的平均速度为:1500÷30=50(米/分钟),林老师从超市到书店的平均速度为:(2000-1500)÷(50-40)=50(米/分钟),所以C中说法正确;D选项中,由图象可知:林老师从书店到家的平均速度为:2000÷(100-80)=100(米/分钟)=6(千米/时),所以D中说法错误.故选D.点睛:读懂题意,“弄清函数图象中每个转折点的坐标的实际意义”是解答本题的关键.5、C【解析】
由菱形的性质得出BD=16,由菱形的面积得出AC=12,再由直角三角形斜边上的中线性质即可得出结果.【详解】∵四边形ABCD是菱形,∴OA=OC,OB=OD=BD,BD⊥AC,∴BD=16,∵S菱形ABCD═AC×BD=96,∴AC=12,∵CE⊥AD,∴∠AEC=90°,∴OE=AC=6,故选C.【点睛】此题主要考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解题的关键.6、A【解析】
先根据∠DAB=∠CAE得出∠DAE=∠BAC,再由相似三角形的判定定理对各选项进行逐一判定即可.【详解】∵∠DAB=∠CAE,∴∠DAE=∠BAC.A.∵,∠B与∠D的大小无法判定,∴无法判定△ABC∽△ADE,故本选项正确;B.∵,∴△ABC∽△ADE,故本选项错误;C.∵∠B=∠D,∴△ABC∽△ADE,故本选项错误;D.∵∠C=∠AED,∴△ABC∽△ADE,故本选项错误.故选A.【点睛】本题考查了相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.7、A【解析】
解:由图像可知,当时,x的取值范围是.故选A.8、D【解析】
利用因式分解法解方程.【详解】∵x(x+3)=0,∴x=0,或x+3=0,解得x=0或x=−3.故选D.【点睛】本题主要考查解一元二次方程-因式分解法,熟悉掌握是关键.9、A【解析】
延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=2,从而得出答案.【详解】解:如图,延长GH交AD于点P,
∵四边形ABCD和四边形CEFG都是矩形,
∴∠ADC=∠ADG=∠CGF=90°,AD=BC=3、GF=CE=1,
∴AD∥GF,
∴∠GFH=∠PAH,
又∵H是AF的中点,
∴AH=FH,
在△APH和△FGH中,∵∴△APH≌△FGH(ASA),
∴AP=GF=1,GH=PH=PG,
∴PD=AD-AP=3-1=2,
∵CG=EF=3、CD=1,
∴DG=2,△DGP是等腰直角三角形,
则GH=PG=×故选:A.【点睛】本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.10、C【解析】
过点C作CE⊥y轴于点E,只要证明△CEA≌△AOB(AAS),即可解决问题;【详解】解:过点C作CE⊥y轴于点E.∵∠CEA=∠CAB=∠AOB=90°,∴∠EAC+∠OAB=90°,∠OAB+∠OBA=90°,∴∠EAC=∠ABO,∵AC=AB,∴△CEA≌△AOB(AAS),∴EA=OB=x,CE=OA=1,∵C的纵坐标为y,OE=OA+AD=1+x,∴y=x+1.故选:C.【点睛】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(每小题3分,共24分)11、4.【解析】试题解析:∵四边形ABCD是矩形,∴OA=AC,OB=BD,BD=AC=8cm,∴OA=OB=4cm,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=4cm.考点:矩形的性质.12、【解析】
根据折叠的性质可得出DC=DE、CP=EP,由“AAS”可证△OEF≌△OBP,可得出OE=OB、EF=BP,设EF=x,则BP=x、DF=5-x、BF=PC=3-x,进而可得出AF=2+x,在Rt△DAF中,利用勾股定理可求出x的值,即可得AF的长.【详解】解:∵将△CDP沿DP折叠,点C落在点E处,∴DC=DE=5,CP=EP.在△OEF和△OBP中,,∴△OEF≌△OBP(AAS),∴OE=OB,EF=BP.设EF=x,则BP=x,DF=DE-EF=5-x,又∵BF=OB+OF=OE+OP=PE=PC,PC=BC-BP=3-x,∴AF=AB-BF=2+x.在Rt△DAF中,AF2+AD2=DF2,∴(2+x)2+32=(5-x)2,∴x=∴AF=2+=故答案为:【点睛】本题考查了翻折变换,矩形的性质,全等三角形的判定与性质以及勾股定理的应用,解题时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.13、【解析】
根据矩形的性质和勾股定理求出BD,证明△BOF∽△BCD,根据相似三角形的性质得到比例式,求出BF即可.【详解】解:四边形ABCD是矩形,∴∠A=90°,AB=6,AD=BC=8,∴BD==10,又∵EF是BD的垂直平分线,∴OB=OD=5,∠BOF=90°,又∵∠C=90°,∴△BOF∽△BCD,∴,即:,解得:BF=【点睛】本题考查的是矩形的性质、线段垂直平分线的性质、相似三角形的性质和判定以及勾股定理的应用,掌握矩形的四个角是直角、对边相等以及线段垂直平分线的定义是解题的关键.14、-1≤m<0【解析】分析:先求出不等式的解集,根据题意得出关于m的不等式组,求出不等式组的解集即可.详解:∵不等式组的解集为又∵不等式组恰有两个整数解,∴解得:.恰有两个整数解,故答案为:点睛:考查一元一次不等式的整数解,解题的关键是写出不等式组的解集.15、(16,8).【解析】
过A、C作AE⊥x轴,CF⊥x轴,根据菱形的性质可得AO=AC=BO=BC=5,再证明△AOE≌△CBF,可得EO=BF,然后可得C点坐标.【详解】解:过A、C作AE⊥x轴,CF⊥x轴,∵点A的坐标是(6,8),∴AO=10,∵四边形AOBC是菱形,∴AO=AC=BO=BC=10,AO∥BC,∴∠AOB=∠CBF,∵AE⊥x轴,CF⊥x轴,∴∠AEO=∠CFO=90°,在△AOE和△CBF中∴△AOE≌△CBF(AAS),∴EO=BF=6,∵BO=10,∴FO=16,∴C(16,8).故答案为:(16,8).【点睛】此题主要考查了菱形的性质,以及全等三角形的判定与性质,关键是掌握菱形四边相等.16、且.【解析】分析:根据分式有意义和二次根式有意义的条件解题.详解:因为在实数范围内有意义,所以x≥0且x-1≠0,则x≥0且x≠1.故答案为x≥0且x≠1.点睛:本题考查了分式和二次根式有意义的条件,分式有意义的条件是分母不等于0;二次根式有意义的条件是被开方数是非负数,代数式既有分式又有二次根式时,分式与二次根式都要有意义.17、6.1【解析】
根据题意求得CD=BC=2,即可求得OD=,由△POA的面积是△PCD面积的2倍,得出xP=3,根据△POD的面积等于2k﹣8,列出关于k的方程,解方程即可求得.【详解】∵▱OABC的顶点A的坐标为(2,0),∴BD∥x轴,OA=BC=2,∵反比例函数和的图象分别经过C,B两点,∴DC•OD=k,BD•OD=2k,∴BD=2CD,∴CD=BC=2,BD=1,∴C(2,),B(1,),∴OD=,∵△POA的面积是△PCD面积的2倍,∴yP=,∴xP==3,∵△POD的面积等于2k﹣8,∴OD•xP=2k﹣8,即×3=2k﹣8,解得k=6.1,故答案为6.1.【点睛】本题考查反比例函数系数k的几何意义,平行四边形的性质,反比例图象上点的坐标特征,求得P的横坐标是解题的关键.18、-1【解析】
试题分析:因为当时分式的值为零,解得且,所以x=-1.考点:分式的值为零的条件.三、解答题(共66分)19、(1)这两年我县投入城市公园建设经费的年平均增长率是0.2;(2)2019年我县城市公园建设经费约为3.456亿元.【解析】
(1)设这两年我县投入城市公园建设经费的年平均增长率为x,根据题意,可以列出相应的一元二次方程,从而可求得年平均增长率;(2)根据(1)中的结果可以计算出2019年我县城市公园建设经费约为多少亿元.【详解】(1)设这两年我县投入城市公园建设经费的年平均增长率为x,2(1+x)2=2.88,解得,x1=0.2,x2=﹣2.2(舍去),答:这两年我县投入城市公园建设经费的年平均增长率是0.2;(2)2.88(1+0.2)=3.456(亿元),答:2019年我县城市公园建设经费约为3.456亿元.【点睛】本题考查了一元二次方程的应用---增长率问题;本题的关键是掌握增长率问题中的一般公式为a(1+x)n
=b,其中n为共增长了几年,a为第一年的原始数据,b是增长后的数据,x是增长率.20、(1)144°;(2)3人,补图见解析;(3)8.3分,7分,乙校;(4)甲校.【解析】分析:(1)利用360°减去其它各组对应的圆心角即可求解;(2)首先求得乙校参赛的人数,即可求得成绩是8分的人数,从而将条形统计图补充完整;(3)首先求得得分是9分的人数,然后根据平均数公式和中位数的定义求解;(4)只要比较每个学校前8名的成绩即可.详解:(1)“7分”所在扇形的圆心角等于360°-90°-72°-54°=144°;(2)乙校参赛的总人数是:4÷=20(人),则成绩是8分的人数是:20-8-4-5=3(人).;(3)甲校中得分是9分的人数是:20-11-8=1(人).则甲校的平均分是:=8.3(分),甲校的中位数是:7分;两校的平均数相同,但乙校的中位数大于甲校的中位数,说明乙校的成绩高于甲校的成绩.(4)甲得分是10分的正好有8人,而乙班得分是10分的有5人,不足8人,则应选择甲校.点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21、(1);(2);(3)的面积不随t的值的变化而变化,理由见解析。【解析】
(1)根据题意首先计算出C点的坐标,再计算三角形的面积.(2)首先利用反比例函数的关系式设出A点的坐标,在表示B、C点的坐标,结合AB=BC求解未知数,即可的A点的坐标.(3)过点C作轴于点E,轴于点D,再根据P点的坐标表示A、B、C点的坐标,再利用,即可求解出的面积.【详解】解:(1)当点P的坐标为时,点A、B的横坐标为-1,∵点A在反比例函数上,点B在反比例函数上,∴点,点.轴,∴点C的纵坐标为4,又∵点C在上,∴点C的坐标为,(2)设点A的坐标为,则则得方程,解之,得(含正),(3)过点C作轴于点E,轴于点D。如图所示:∵点P的坐标为,∴点A的坐标为,点,点故的面积不随t的值的变化而变化【点睛】本题主要考查反比例函数的性质,关键在于反比例函数上的点与坐标轴形成矩形的面积性质,反比例函数上的点与坐标轴形成矩形的面积是定值.22、(1)①证明见解析;②;(1)ND1=NA1+CD1,证明见解析;(3)DN1+BM1=AM1+AN1,证明见解析.【解析】试题分析:(1)①由矩形的对角线互相平分得OA=OC,根据正方形的内角都是直角,得∠EOG=90°,用线段垂直平分线上的点到两端点的距离相等即可得;②用勾股定理计算即可;(1)连接BN,方法同(1)得到NB=ND,再用勾股定理即可;(3)延长GO交CD于H,连接MN,HN,先判断出BM=DH,OM=OH,再和前两个一样,得出MN=NH,再用勾股定理即可.解:(1)①∵四边形ABCD是矩形,∴OA=OC,∵四边形EFGO为正方形,∴∠EOG=90°,∴NC=NA;②由①得,NA=NC=4,DN=1,根据勾股定理得CD==;(1)结论:ND1=NA1+CD1,连接NB,∵四边形ABCD是矩形,∴OB=OD,AB=CD,∵四边形EFGO为正方形,∴∠EOG=90°,∴ND=NB.根据勾股定理得NB1=NA1+AB1=NA1+CD1=ND1;(3)结论AN1+AM1=DN1+BM1,延长GO交CD于H,连接MN,HN,∵四边形ABCD是矩形,∴OB=OD,∠OBM=∠ODH,又∵∠BOM=∠DOH,∴△BOM≌△DOH,∴BM=DH,OM=OH,∵四边形EFGO是正方形,∴∠EOG=90°,∴MN=NH,在Rt△NDH中,NH1=DN1+DH1=DN1+BM1,在Rt△AMN中,MN1=AM1+AN1,∴DN1+BM1=AM1+AN1.23、,.【解析】
先进行分式混合运算,再由已知得出,代入原式进行计算即可.【详解】原式====,由a满足得,故原式=.【点睛】本题考查了分式的混合运算——分式的化简求值,熟练掌握运算法则以及运算顺序是解题的关键.24、(1)k=﹣,b=;(2)AB边上的中线长为.【解析】
(1)由A、B两点的坐标利用待定系数法可求得k、b的值;(2)由A、B两点到y轴的距离相等可知直线AB与y轴的交点即为线段AB的中点,利用(1)求得的解析式可求得中线的长.【详解】(1)∵点A、B都在一次函数y=kx+b图象上,∴把(2,1)、(﹣2,4)代入可得,解得,∴k=﹣,b=;(2)如图,设直线AB交y轴于点C,∵A(2,1)、B(﹣2,4),∴C点为线段AB的中点,由(1)可知直线AB的解析式为y=﹣x+,令x=0可得y=,∴OC=,即AB边上的中线长为.【点睛】此题考查一次函数图象上点的坐标特征,解题关键在于利用待定系数法求解25、探究三:16,6;结论:n²
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 奶茶店店员合同协议书
- 家庭亲子活动计划
- 儿童购物网商业计划书范本【多】
- 2025年机电一体化的总结报告
- 霸王茶姬计划书
- 商业模式-连锁企业商业网点扩课程
- 2021田径工作报告
- 2025年鲜果品项目投资可行性研究分析报告
- 工地石头开采合同协议书
- 中国TiN涂层项目投资计划书
- 2025购销茶叶合同范本
- 2025年宣城郎溪开创控股集团有限公司下属子公司招聘12人笔试参考题库附带答案详解
- 山东济南历年中考作文题与审题指导(2005-2021)
- 风冷模块培训课件
- 职业技术学院2024级工业互联网技术专业人才培养方案
- 罗森加盟合同协议
- 2025年中考英语押题预测卷(徐州专用)(原卷版)
- 2025-2030中国马丁靴行业发展分析及发展前景与投资研究报告
- 锝99mTc替曲膦注射液-药品临床应用解读
- 武汉各区2023-2024学年九下化学四调压轴题分类汇编-第8题选择题
- 脑血管造影术的术前及术后护理
评论
0/150
提交评论