2024届内蒙古通辽市名校八年级数学第二学期期末质量检测模拟试题含解析_第1页
2024届内蒙古通辽市名校八年级数学第二学期期末质量检测模拟试题含解析_第2页
2024届内蒙古通辽市名校八年级数学第二学期期末质量检测模拟试题含解析_第3页
2024届内蒙古通辽市名校八年级数学第二学期期末质量检测模拟试题含解析_第4页
2024届内蒙古通辽市名校八年级数学第二学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届内蒙古通辽市名校八年级数学第二学期期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.样本数据3、6、a、4、2的平均数是5,则这个样本的方差是(

)A.8 B.5 C. D.32.将一张多边形纸片沿图中虚线剪开,如果剪开后得到的两个图形的内角和相等,下列四种剪法中符合要求的是()A. B. C. D.3.如图,四边形ABCD与四边形AEFG是位似图形,且AC:AF=2:3,则下列结论不正确的是()A.四边形ABCD与四边形AEFG是相似图形B.AD与AE的比是2:3C.四边形ABCD与四边形AEFG的周长比是2:3D.四边形ABCD与四边形AEFG的面积比是4:94.如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC的长是()A.12 B.14 C.16 D.185.菱形具有平行四边形不一定具有的特征是()A.对角线互相垂直 B.对角相等 C.对角线互相平分 D.对边相等6.关于的分式方程有增根,则的值为A.0 B. C. D.7.数据1,3,5,7,9的方差是().A.2 B.4 C.8 D.168.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.9.如图,a,b,c分别表示苹果、梨、桃子的质量,同类水果质量相等,则下列关系正确的是A. B. C. D.10.如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,作BF⊥AM于点F,连接BE.若AF=1,四边形ABED的面积为6,则BF的长为()A.2 B.3 C. D.二、填空题(每小题3分,共24分)11.已知一次函数y=(m﹣1)x﹣m+2的图象与y轴相交于y轴的正半轴上,则m的取值范围是_____.12.将直线的图象向上平移3个单位长度,得到直线______.13.化简:32-314.如图,直线分别与轴、轴交于点,点是反比例函数的图象上位于直线下方的点,过点分别作轴、轴的垂线,垂足分别为点,交直线于点,若,则的值为__________.15.在四边形ABCD中,AB=CD,要使四边形ABCD是中心对称图形,只需添加一个条件,这个条件可以是▲.(只要填写一种情况)16.如图,在正方形ABCD的外侧作等边△DEC,则∠AEB=_________度.17.如图,在Rt△ABC与Rt△DEF中,∠B=∠E=90°,AC=DF,AB=DE,∠A=50°,则∠DFE=

________​18.已知点A(a,b)是一次函数的图像与反比例函数的图像的一个交点,则=___.三、解答题(共66分)19.(10分)我国古代数学著作《九章算术》中的一个问题.原文是:今有池方一丈,葭生其中央,出水尺.引葭赴岸,适与岸齐问水深、葭长各几何译文大意是:如图,有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池边的中点,它的顶端恰好到达池边的水面.问水的深度与这根芦苇的长度分别是多少?20.(6分)如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形ABCD的外角∠DCG的平分线CF于点F.(1)如图2,取AB的中点H,连接HE,求证:AE=EF.(2)如图3,若点E是BC的延长线上(除C点外)的任意一点,其他条件不变结论“AE=EF”仍然成立吗?如果正确,写出证明过程:如果不正确,请说明理由.21.(6分)在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质一一运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义.结合上面经历的学习过程,现在来解决下面的问题:在函数中,当时,当时,.求这个函数的表达式;在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.22.(8分)为了了解某校七年级男生的体能情况,体育老师随即抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2尚不完整的统计图.(1)本次抽测的男生有人;(2)请你将图1的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中,估计有多少人体能达标?23.(8分)已知:如图,在平面直角坐标系中,一次函数的图象分别与轴交于点A、B,点在轴上,若,求直线PB的函数解析式.24.(8分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点;(1)在第一个图中,以格点为端点,画一个三角形,使三边长分别为2、、,则这个三角形的面积是_________;(2)在第二个图中,以格点为顶点,画一个正方形,使它的面积为10。25.(10分)如图,在▱ABCD中,AB=6,AC=10,BD=16,求△COD的周长.26.(10分)如图,在∆ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

本题可先求出a的值,再代入方差的公式即可.【详解】∵3、6、a、4、2的平均数是5,

∴a=10,

∴方差.

故选A.【点睛】本题考查的知识点是平均数和方差的求法,解题关键是熟记计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.2、C【解析】

根据多边形的内角和定理即可判断.【详解】A.剪开后的两个图形一个是三角形、一个是四边形,它们的内角和分别是180°、360°,故此选项不合题意;B.剪开后的两个图形一个是三角形、一个是四边形,它们的内角和分别是180°、360°,故此选项不合题意;C.剪开后的两个图形都是四边形,它们的内角和都是360°;故此选项符合题意;D.剪开后的两个图形一个是三角形、一个是四边形,它们的内角和分别是180°、360°,故此选项不合题意;故选:C.【点睛】此题考查多边形的内角和定理,解题关键在于根据剪开后得到的两个图形来判断.3、B【解析】∵四边形ABCD与四边形AEFG是位似图形;A、四边形ABCD与四边形AEFG一定是相似图形,故正确;B、AD与AG是对应边,故AD:AE=2:3;故错误;C、四边形ABCD与四边形AEFG的相似比是2:3,故正确;D、则周长的比是2:3,面积的比是4:9,故正确.故选B.4、B【解析】

延长BN交AC于D,证明△ANB≌△AND,根据全等三角形的性质、三角形中位线定理计算即可.【详解】延长BN交AC于D,在△ANB和△AND中,,∴△ANB≌△AND,∴AD=AB=8,BN=ND,∵M是△ABC的边BC的中点,∴DC=2MN=6,∴AC=AD+CD=14,故选B.【点睛】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.5、A【解析】

根据平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分;菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角进行解答即可.【详解】菱形具有但平行四边形不一定具有的是对角线互相垂直,故选A.【点睛】本题主要考查了菱形和平行四边形的性质,关键是熟练掌握二者的性质定理.6、D【解析】分析:增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x+2=0,得到x=-2,然后代入化为整式方程的方程算出m的值即可.详解:方程两边都乘(x+2),得:x-5=m,∵原方程有增根,∴最简公分母:x+2=0,解得x=-2,当x=-2时,m=-1.故选D.点睛:此题考查了分式方程增根的知识.注意增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.7、C【解析】

先计算出平均数,再根据方差公式计算即可.【详解】∵1、3、5、7、9的平均数是(1+3+5+7+9)÷5=5,

∴方差=×[(1-5)2+(3-5)2+(5-5)2+(7-5)2+(9-5)2]=8;

故选:C.【点睛】考查方差的定义与意义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8、B【解析】

首先根据把一个图形沿着一条直线对折后两部分完全重合,这样的图形叫轴对称图形,分别找出各选项所给图形中是轴对称图形的选项,进而排除不是轴对称图形的选项;然后再分析得到的是轴对称图形的选项,根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,找出它们当中是中心对称图形的选项即可【详解】A是中心对称图形,不是轴对称图形,不符合题意B.既是中心对称图形又是轴对称图形,符合题意;C.既不是中心对称图形,也不是轴对称图形,不符合题意D是轴对称图形,不是中心对称图形,不符合题意故选B【点睛】此题主要考查中心对称图形和轴对称图形,根据定义对各选项进行分析判断是解决问题的关键;9、C【解析】

根据图形就可以得到一个相等关系与一个不等关系,就可以判断a,b,c的大小关系.【详解】解:依图得3b<2a,

∴a>b,

∵2c=b,

∴b>c,

∴a>b>c

故选C.【点睛】本题考查了一元一次不等式的应用,解题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.10、B【解析】

先证明ΔABF≌ΔDAE得到BF=AE,设BF=x,则AE=x,DE=AF=1,利用四边形ABED的面积=得,解之即可求得BF的长.【详解】∵四边形ABCD是正方形,∴BA=AD,∠BAD=90º,∴∠DAE+∠BAF=90º,∵BF⊥AM,DE⊥AM,∴∠AFB=∠DEA=90º,∴∠ABF+∠BAF=90º,∴∠ABF=∠DAE,在ΔABF和ΔDAE中∴ΔABF≌ΔDAE(AAS),∴BF=AE,DE=AF=1设BF=x,则AF=x,由四边形ABED的面积为6得:,即,解得:(舍去),∴BF=3,故选:B.【点睛】本题主要考查正方形的性质、三角形面积公式以及全等三角形的判定,熟练运用全等三角形的知识是解答的关键.二、填空题(每小题3分,共24分)11、m<2且m≠1【解析】

根据一次函数图象与系数的关系得到m-1≠0,-m+2>0,然后求出两个不等式的公共部分即可.【详解】解:根据题意得m-1≠0,-m+2>0,

解得m<2且m≠1.

故答案为m<2且m≠1.【点睛】本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).12、【解析】

上下平移时只需让的值加减即可.【详解】原直线的,,向上平移3个单位长度得到了新直线,那么新直线的,,所以新直线的解析式为:.故答案为:.【点睛】考查了一次函数图象与几何变换,要注意求直线平移后的解析式时的值不变,只有发生变化.13、-6【解析】

根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可:【详解】32故答案为-614、-3【解析】

首先设PN=x,PM=y,由已知条件得出EE′=PN=x,FF′=PM=y,A(-5,0),B(0,5),通过等量转换,列出关系式,求出,又因为反比例函数在第二象限,进而得解.【详解】过点F作FF′⊥OA与F′,过点E作EE′⊥OB与E′,如图所示,设PN=x,PM=y,由已知条件,得EE′=PN=x,FF′=PM=y,A(-5,0),B(0,5)∴OA=OB=5∴∠OAB=∠OBA=45°∴FF′=AF′=y,EE′=BE′=x,∴AF=,BE=又∵∴∴又∵反比例函数在第二象限,∴.【点睛】此题主要考查一次函数和反比例函数的综合应用,熟练掌握,即可解题.15、AD=BC(答案不唯一).【解析】根据平行四边形是中心对称图形,可以针对平行四边形的各种判定方法,给出相应的条件,得出此四边形是中心对称图形:∵AB=CD,∴当AD=BC时,根据两组对边分别相等的四边形是平行四边形.当AB∥CD时,根据一组对边平行且相等的四边形是平行四边形.当∠B+∠C=180°或∠A+∠D=180°时,四边形ABCD是平行四边形.故此时是中心对称图形.故答案为AD=BC或AB∥CD或∠B+∠C=180°或∠A+∠D=180°等(答案不唯一).16、1【解析】

根据正方形和等边三角形的性质证明△ADE是等腰三角形,由此可以求出∠DEA,同理求出∠CEB即可解决问题.【详解】解:∵四边形ABCD是正方形,∴∠ADC=90°,CD=AD,∵△DCE是正三角形,∴DE=DC=AD,∠CDE=∠DEC=60°,∴△ADE是等腰三角形,∠ADE=90°+60°=150°,∴∠DAE=∠DEA==15°,同理可得:∠CBE=∠CEB=15°,∴∠AEB=∠DEC―∠DEA―∠CEB=60°-15°-15°=1°,故答案为:1.【点睛】此题主要考查了正方形和等边三角形的性质、等腰三角形的判定和性质以及三角形的内角和定理,灵活运用相关性质定理是解题的关键.17、40°【解析】

根据HL可证Rt△ABC≌Rt△DEF,由全等三角形的性质可得∠EDF=∠A=50°,即可求解.【详解】∵△ABC和△DEF是直角三角形且AC=DF,AB=DE,∴△ABC≌△DEF.∵∠A=50°,∴∠EDF=∠A=50°,∵△DEF是直角三角形,∴∠EDF+∠DFE=90°.∵∠EDF=50°,∴∠DFE=90°-50°=40°.故答案为40°.【点睛】本题主要考查全等三角形的性质与判定,以及直角三角形两个锐角互余,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.18、3【解析】

将点A(a,b)带入y=-x+3的图象与反比例函数中,即可求出a+b=3,ab=1,再根据=进行计算.【详解】∵点A(a,b)是一次函数的图像与反比例函数的图像的一个交点,∴a+b=3,ab=1,∴==3.故答案是:3.【点睛】考查了一次函数和反比例函数上点的坐标特点,解题关键是利用图象上点的坐标满足函数的解析式.三、解答题(共66分)19、水的深度是12尺,芦苇的长度是13尺.【解析】

找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【详解】解:设水的深度为x尺,如下图,根据题意,芦苇长:OB=OA=(x+1)尺,在Rt△OCB中,52+x2=(x+1)2解得:x=12,x+1=13所以,水的深度是12尺,芦苇的长度是13尺.【点睛】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.20、(1)见解析;(2)成立,见解析.【解析】

(1)取AB的中点H,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECF,从而得到AE=EF;(2)成立,延长BA到M,使AM=CE,根据已知及正方形的性质利用ASA判定△AHE≌△ECF,从而得到AE=EF;【详解】(1)证明:取AB的中点H,连接EH;如图1所示∵四边形ABCD是正方形,AE⊥EF;∴∠1+∠AEB=90°,∠2+∠AEB=90°∴∠1=∠2,∵BH=BE,∠BHE=45°,且∠FCG=45°,∴∠AHE=∠ECF=135°,AH=CE,在△AHE和△ECF中,,∴△AHE≌△ECF(ASA),∴AE=EF;(2)解:AE=EF成立,理由如下:如图2,延长BA到M,使AM=CE,∵∠AEF=90°,∴∠FEG+∠AEB=90°.∵∠BAE+∠AEB=90°,∴∠BAE=∠FEG,∴∠MAE=∠CEF.∵AB=BC,∴AB+AM=BC+CE,即BM=BE.∴∠M=45°,∴∠M=∠FCE.在△AME与△ECF中,,∴△AME≌△ECF(ASA),∴AE=EF.【点睛】本题考查正方形的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.21、;详见解析;或【解析】

(1)把x=0,y=4;x=1,y=3代入函数中,求出k、b即可;(1)根据(1)中的表达式可以画出该函数的图象;(3)根据图象可以直接写出所求不等式的解集.【详解】(1)把x=0,y=4代入得:4=,∴b=3,把x=1,y=3,b=3代入得:,∴k=1,即函数的表达式为,(1)由题意得:,画图象如下图:(3)由上述图象可得:当x<0或x1时,,故答案为:x<0或x1.【点睛】本题考查了待定系数法求函数表达式,函数图象的画法,由图象写出不等式的解集,掌握函数的图象和性质是解题的关键.22、(1)50;(2)5次的人数有16人(3)252【解析】

(1)由引体向上的次数为4次的人数除以所占的百分比即可求出抽测的男生数;(2)求出次数为5次的人数,补全统计图即可;(3)求出5次以上(含5次)人数占的百分比,乘以350即可得到结果.【详解】(1)根据题意得:10÷20%=50(人),则本次抽测的男生有50人;故

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论