广东省乳源县2024届八年级数学第二学期期末考试试题含解析_第1页
广东省乳源县2024届八年级数学第二学期期末考试试题含解析_第2页
广东省乳源县2024届八年级数学第二学期期末考试试题含解析_第3页
广东省乳源县2024届八年级数学第二学期期末考试试题含解析_第4页
广东省乳源县2024届八年级数学第二学期期末考试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省乳源县2024届八年级数学第二学期期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.解关于的方程(其中为常数)产生增根,则常数的值等于()A.-2 B.2 C.-1 D.12.已知E、F、G、H分别是菱形ABCD的边AB、BC、CD、AD的中点,则四边形EFGH的形状一定是()A.平行四边形 B.矩形 C.菱形 D.正方形3.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒。设平均每次降价的百分率为,根据题意所列方程正确的是(

)A. B. C. D.4.如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A.1 B.2 C.3 D.45.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A. B. C.5 D.46.一个六边形ABCDEF纸片上剪去一个角∠BGD后,得到∠1+∠2+∠3+∠4+∠5=430°,则∠BGD=()A.60° B.70° C.80° D.90°7.在四边形中,,再补充一个条件使得四边形为菱形,这个条件可以是()A. B.C. D.与互相平分8.下列说法正确的是()A.一个游戏中奖的概率是,则做100次这样的游戏一定会中奖B.为了了解全国中学生的心理健康状况,应采用普查的方式C.一组数据0,1,2,1,1的众数和中位数都是1D.若甲组数据的方差为,乙组数据的方差为,则乙组数据比甲组数据稳定9.如图,的对角线,相交于点,点为中点,若的周长为28,,则的周长为()A.12 B.17 C.19 D.2410.下列运算正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知一组数据:10,8,6,10,8,13,11,10,12,7,10,11,10,9,12,10,9,12,9,8,把这组数据按照6~7,8~9,10~11,12~13分组,那么频率为0.4的一组是_________.12.如图,矩形纸片ABCD中,,把矩形纸片沿直线AC折叠,点B落在点E处,AE交DC于点F,若,则BC的长度为_______cm.13.有一个一元二次方程,它的一个根x1=1,另一个根-2<x2<1.请你写出一个符合这样条件的方程:_________.14.在平面直角坐标系中,△ABC上有一点P(0,2),将△ABC向左平移2个单位长度,再向上平移3个单位长度,得到的新三角形上与点P相对应的点的坐标是_____.15.为了解宿迁市中小学生对春节联欢晚会语言类节目喜爱的程度,这项调查采用__________方式调查较好(填“普查”或“抽样调查”).16.己知三角形三边长分别为,,,则此三角形的最大边上的高等于_____________.17.如图是甲、乙两名射由运动员的10次射击训练成绩的折线统计图观察图形,比较甲、乙这10次射击成绩的方差、的大小:_____(填“>”、“<”或“=”)18.如图,一张矩形纸片的长AD=12,宽AB=2,点E在边AD上,点F在边BC上,将四边形ABFE沿直线EF翻折后,点B落在边AD的三等分点G处,则EG的长为_______.三、解答题(共66分)19.(10分)如图1,在直角坐标系中放入一个边长AB长为3,BC长为5的矩形纸片ABCD,使得BC、AB所在直线分别与x、y轴重合.将纸片沿着折痕AE翻折后,点D恰好落在x轴上,记为F.(1)求折痕AE所在直线与x轴交点的坐标;(2)如图2,过D作DG⊥AF,求DG的长度;(3)将矩形ABCD水平向右移动n个单位,则点B坐标为(n,1),其中n>1.如图3所示,连接OA,若△OAF是等腰三角形,试求点B的坐标.20.(6分)如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达地点B相距50米,结果他在水中实际游的路程比河的宽度多10米,求该河的宽度AB为多少米?21.(6分)如图,在四边形ABCD中,AC、BD相交于点O,O是AC的中点,AB//DC,AC=10,BD=1.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,求平行四边形ABCD的面积.22.(8分)“中华人民共和国道路交通管理条例”规定:小汽车在高速公路上的行驶速度不得超过120千米/小时,不得低于60千米/小时,如图,一辆小汽车在高速公路上直道行驶,某一时刻刚好行驶到“车速检测点A”正前方60米B处,过了3秒后,测得小汽车位置C与“车速检测点A”之间的距离为100米,这辆小汽车是按规定行驶吗?23.(8分)如图,在△ABC中,AD为BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(1)四边形AFCD是什么特殊的四边形?请说明理由.(2)填空:①若AB=AC,则四边形AFCD是_______形.②当△ABC满足条件______时,四边形AFCD是正方形.24.(8分)画出函数y=-2x+1的图象.25.(10分)如图,在正方形ABCD中,点M在CD边上,点N在正方形ABCD外部,且满足∠CMN=90°,CM=MN.连接AN,CN,取AN的中点E,连接BE,AC,交于F点.(1)①依题意补全图形;②求证:BE⊥AC.(2)请探究线段BE,AD,CN所满足的等量关系,并证明你的结论.(3)设AB=1,若点M沿着线段CD从点C运动到点D,则在该运动过程中,线段EN所扫过的面积为______________(直接写出答案).26.(10分)如图,已知在平面直角坐标系中,正比例函数与一次函数的图象相交于点,过点作轴的垂线,分别交正比例函数的图像于点B,交一次函数的图象于点C,连接OC.(1)求这两个函数解析式.(2)求的面积.(3)在坐标轴上存在点,使是以为腰的等腰三角形,请直接写出点的坐标。

参考答案一、选择题(每小题3分,共30分)1、C【解析】

分式方程去分母转化为整式方程,由分式方程有增根,得到x-5=0,求出x的值,代入整式方程计算即可求出m的值.【详解】解:去分母得:x-6+x-5=m,

由分式方程有增根,得到x-5=0,即x=5,

把x=5代入整式方程得:m=-1,

故选:C.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.2、B【解析】

本题没有图,需要先画出图形,如图所示

连接AC、BD交于O,根据三角形的中位线定理推出EF∥BD∥HG,EH∥AC∥FG,得出四边形EFGH是平行四边形,根据菱形性质推出AC⊥BD,推出EF⊥EH,即可得出答案.【详解】解:四边形EFGH的形状为矩形,

理由如下:

连接AC、BD交于O,

∵E、F、G、H分别是AB、AD、CD、BC的中点,

∴EF∥BD,FG∥AC,HG∥BD,EH∥AC,

∴EF∥HG,EH∥FG,

∴四边形EFGH是平行四边形,

∵四边形ABCD是菱形,

∴AC⊥BD,

∵EF∥BD,EH∥AC,

∴EF⊥EH,

∴∠FEH=90°,

∴平行四边形EFGH是矩形,

故答案为:B.【点睛】本题考查了矩形的判定,菱形的性质,平行四边形的判定,平行线性质等知识点的运用,主要考查学生能否正确运用性质进行推理,题目比较典型,难度适中.3、C【解析】试题解析:第一次降价后的价格为36×(1-x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36×(1-x)×(1-x),

则列出的方程是36×(1-x)2=1.

故选C.4、D【解析】【分析】过点C作轴,设点,则得到点C的坐标,根据的面积为1,得到的关系式,即可求出的值.【解答】过点C作轴,设点,则

得到点C的坐标为:的面积为1,即故选D.【点评】考查反比例函数图象上点的坐标特征,掌握待定系数法是解题的关键.5、A【解析】

根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.【详解】解:∵四边形ABCD是菱形,设AB,CD交于O点,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,∵S菱形ABCD=×AC×BD=AB×DH,∴×8×6=5×DH,∴DH=,故选A.【点睛】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱形ABCD=×AC×BD=AB×DH是解此题的关键.6、B【解析】

∵六边形ABCDEF的内角和为:180°×(6-2)=720°,且∠1+∠2+∠3+∠4+∠5=430°,∴∠GBC+∠C+∠CDG=720°-430°=290°,∴∠G=360°-(∠GBC+∠C+∠CDG)=70°,故选B.7、D【解析】

由在四边形ABCD中,对角线AC,BD互相平分,可得四边形ABCD是平行四边形,又由对角线互相垂直的平行四边形是菱形,即可求得答案.【详解】解:∵在四边形ABCD中,对角线AC,BD互相平分,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形,故选:D.【点睛】此题考查了平行四边形的判定以及菱形的判定.此题比较简单,注意掌握对角线互相垂直的平行四边形是菱形定理的应用.8、C【解析】

根据调查方式,可判断A,根据概率的意义一,可判断B根据中位数、众数,可判断c,根据方差的性质,可判断D.【详解】A、一个游戏中奖的概率是,做100次这样的游戏有可能中奖,而不是一定中奖,故A错误;

B、为了了解全国中学生的心理健康状况,应采用抽查方式,故B错误;

C、一组数据0,1,2,1,1的众数和中位数都是1,故C正确;

D.若甲组数据的方差为,乙组数据的方差为,无法比较甲乙两组的方差,故无法确定那组数据更加稳定,故D错误.故选:C.【点睛】本题考查了概率、抽样调查及普查、中位数及众数、方差等,熟练的掌握各知识点的概念及计算方法是关键.9、A【解析】

由四边形ABCD是平行四边形,根据平行四边形的性质可得OB=OD,再由E是CD中点,即可得BE=BC,OE是△BCD的中位线,由三角形的中位线定理可得OE=AB,再由▱ABCD的周长为28,BD=10,即可求得AB+BC=14,BO=5,由此可得BE+OE=7,再由△OBE的周长为=BE+OE+BO即可求得△OBE的周长.【详解】∵四边形ABCD是平行四边形,∴O是BD中点,OB=OD,又∵E是CD中点,∴BE=BC,OE是△BCD的中位线,∴OE=AB,∵▱ABCD的周长为28,BD=10,∴AB+BC=14,∴BE+OE=7,BO=5∴△OBE的周长为=BE+OE+BO=7+5=1.故选A.【点睛】本题考查了平行四边形的性质及三角形的中位线定理,熟练运用性质及定理是解决问题的关键.10、D【解析】

根据二次根式的计算法则对各个选项一一进行计算即可判断出答案.【详解】A.不是同类二次根式,不能合并,故A错误;B.,故B错误;C.,故C错误;D.故D正确.故选D.【点睛】本题考查了二次根式的运算.熟练应用二次根式的计算法则进行正确计算是解题的关键.二、填空题(每小题3分,共24分)11、【解析】

首先数出数据的总数,然后数出各个小组内的数据个数,根据频率的计算公式,求出各段的频率,即可作出判断.【详解】解:共有10个数据,其中6~7的频率是1÷10=0.1;

8~9的频率是6÷10=0.3;

10~11的频率是8÷10=0.4;

11~13的频率是4÷10=0.1.

故答案为.【点睛】本题考查频数与频率,掌握频率的计算方法:频率=频数÷总数.12、1【解析】

由折叠的性质可证AF=FC.在Rt△ADF中,由勾股定理求AD的长,然后根据矩形的性质求得AD=BC.【详解】解:由折叠的性质知,AE=AB=CD,CE=BC=AD,

∴△ADC≌△CEA,∠EAC=∠DCA,

∴CF=AF=cm,DF=CD-CF=AB-CF==,

在Rt△ADF中,由勾股定理得,

AD2=AF2-DF2,则AD=1cm.∴BC=AD=1cm.

故答案为:1.【点睛】本题考查了翻折变换的知识,其中利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②全等三角形的判定和性质,勾股定理求解.13、(答案不唯一).【解析】

可选择x2=-1,则两根之和与两根之积可求,再设一元二次方程的二次项系数为1,那么可得所求方程.【详解】解:∵方程的另一个根-2<x2<1,∴可设另一个根为x2=-1,∵一个根x1=1,∴两根之和为1,两根之积为-1,设一元二次方程的二次项系数为1,此时方程应为.【点睛】本题考查的是已知两数,构造以此两数为根的一元二次方程,这属于一元二次方程根与系数关系的知识,对于此类问题:知道方程的一个根和另一个根的范围,可设出另一个根的具体值,进一步求出两根之和与两根之积,再设一元二次方程的二次项系数为1,那么所求的一元二次方程即为.14、(﹣2,5)【解析】

平移的规律:平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:由点的平移规律可知,此题规律是:向左平移2个单位再向上平移3个单位,照此规律计算可知得到的新三角形上与点P相对应的点的坐标是(0﹣2,2+3),即(﹣2,5).故答案为(﹣2,5).【点睛】本题考查图形的平移变换.在平面直角坐标系中,图形的平移与图形上某点的平移相同.15、抽样调查【解析】分析:根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.详解:为了解宿迁市中小学生对中华古诗词喜爱的程度,因为人员多、所费人力、物力和时间较多,所以适合采用的调查方式是抽样调查.故答案为抽样调查.点睛:本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.16、【解析】分析:根据勾股定理的逆定理可判断三角形为直角三角形,然后根据直角三角形的面积求解即可.详解:∵三角形三边长分别为,,∴∴三角形是直角三角形∴∴高为故答案为.点睛:此题主要考查了勾股定理的逆定理的应用,利用勾股定理的逆定理判断此三角形是直角三角形是解题关键.17、<【解析】

利用折线统计图可判断乙运动员的成绩波动较大,然后根据方差的意义可得到甲乙的方差的大小.【详解】解:由折线统计图得乙运动员的成绩波动较大,

所以.

故答案为:<【点睛】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了方差的意义.18、或【解析】

如图,作GH⊥BC于H.则四边形ABHG是矩形.G是AD的三等分点,推出AG=4或8,证明EG=FG=FB,设EG=FG=FB=x,分两种情形构建方程即可解决问题.【详解】解:如图,作GH⊥BC于H.则四边形ABHG是矩形.

∵G是AD的三等分点,

∴AG=4或8,

由翻折可知:FG=FB,∠EFB=∠EFG,设FG=FB=x.

∵AD∥BC,

∴∠FEG=∠EFB=∠GFE,

∴EG=FG=x,

在Rt△FGH中,∵FG2=GH2+FH2,

∴x2=22+(4-x)2或x2=22+(8-x)2

解得:x=或,

故答案为或.【点睛】本题考查翻折变换,矩形的性质,等腰三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.三、解答题(共66分)19、(2)折痕AE所在直线与x轴交点的坐标为(9,2);(2)3;(3)点B(4,2)或B(2,2).【解析】

(2)根据四边形ABCD是矩形以及由折叠对称性得出AF=AD=5,EF=DE,进而求出BF的长,即可得出E点的坐标,进而得出AE所在直线与x轴交点的坐标;(2)判断出△DAG≌△AFB,即可得出结论;(3)分三种情况讨论:若AO=AF,OF=FA,AO=OF,利用勾股定理求出即可.【详解】解:(2)∵四边形ABCD是矩形,∴AD=CB=5,AB=DC=3,∠D=∠DCB=∠ABC=92°,由折叠对称性:AF=AD=5,EF=DE,在Rt△ABF中,BF==4,∴CF=2,设EC=x,则EF=3﹣x,在Rt△ECF中,22+x2=(3﹣x)2,解得:x=,∴E点坐标为:(5,),∴设AE所在直线解析式为:y=ax+b,则,解得:,∴AE所在直线解析式为:y=x+3,当y=2时,x=9,故折痕AE所在直线与x轴交点的坐标为:(9,2);(2)在△DAG和△AFB中∵,∴△DAG≌△AFB,∴DG=AB=3;(3)分三种情况讨论:若AO=AF,∵AB⊥OF,∴BO=BF=4,∴n=4,∴B(4,2),若OF=FA,则n+4=5,解得:n=2,∴B(2,2),若AO=OF,在Rt△AOB中,AO2=OB2+AB2=m2+9,∴(n+4)2=n2+9,解得:n=(n<2不合题意舍去),综上所述,若△OAF是等腰三角形,n的值为n=4或2.即点B(4,2)或B(2,2).【点睛】此题是四边形综合题,主要考查了待定系数法,折叠的性质,全等三角形的判定和性质,勾股定理,等腰三角形的性质,利用勾股定理求出CE是解本题的关键.20、1200米【解析】试题分析:由题可看出,A,B,C三点构成一个直角三角形,AB,BC为直角边,AC,是斜边,可设AB=X,AC=10+X因为BC=50根据勾股定理可知考点:勾股定理,三角函数的值点评:本题属于勾股定理的基本运算和求解方法,在解题中需要合理的作图21、(1)证明见解析;(2)2.【解析】

(1)先证明△AOB≌△COD,可得OD=OB,从而根据对角线互相平分的四边形是平行四边形可证结论;(2)先根据对角线互相垂直的平行四边形是菱形证明四边形ABCD是菱形,然后根据菱形的面积等于对角线乘积的一半计算即可.【详解】解:(1)∵AB//DC,∴∠1=∠2,∠3=∠4又∵AO=CO,∴△AOB≌△COD,∴OD=OB,∴四边形ABCD是平行四边形(2)∵AC⊥BD,∴平行四边形ABCD是菱形,∴平行四边形ABCD的面积为S=AC×BD=2.【点睛】本题考查了平行四边形的判定,菱形的判定与性质,熟练掌握平行四边形的判定方法和菱形的判定方法是解答本题的关键.22、这辆小汽车是按“中华人民共和国道路交通管理条例”规定行驶.̈【解析】

根据勾股定理求出BC,求出速度,再比较即可.【详解】解:由勾股定理得,BC=Av=80÷3=803(米∵803米/秒=96千米/时,而60<96<120∴这辆小汽车是按“中华人民共和国道路交通管理条例”规定行驶.̈【点睛】本题考查了勾股定理的应用,能求出BC的长是解此题的关键.23、(1)平行四边形,理由见解析;(2)①矩形,②AB=AC,∠BAC=1.【解析】

(1)由“AAS”可证△AEF≌△DEB,可得AF=BD=CD,由平行四边形的判定可得四边形AFCD是平行四边形;

(2)①由等腰三角形的性质可得AD⊥BC,可证平行四边形AFCD是矩形;

②由等腰直角三角形的性质可得AD=CD=BD,AD⊥BC,可证平行四边形AFCD是正方形.【详解】解:(1)平行四边形理由如下:∵AF∥BC∴∠AFE=∠DBE,在ΔAFE与△DBE中∴ΔAFE≌ΔDBE∴AF=BD,又BD=CD∴AF=CD又AF∥CD∴四边形AFCD是平行四边形;(2)①∵AB=AC,AD是BC边上的中线

∴AD⊥BC,且四边形AFCD是平行四边形

∴四边形AFCD是矩形;

②当△ABC满足AB=AC,∠BAC=1°条件时,四边形AFCD是正方形.

理由为:∵AB=AC,∠BAC=1°,AD是BC边上的中线

∴AD=CD=BD,AD⊥BC

∵四边形AFCD是平行四边形,AD⊥BC

∴四边形AFCD是矩形,且AD=CD

∴四边形AFCD是正方形.

故答案为:(1)平行四边形,理由见解析;(2)①矩形,②AB=AC,∠BAC=1.【点睛】本题考查正方形的判定,平行四边形的判定以及全等三角形的判定与性质、三角形中线的性质等知识点,熟练掌握平行四边形的判定是解题关键.24、图象如图所示,见解析.【解析】

根据一次函数的图象是直线,只需确定直线上两个特殊点即可.【详解】解:函数经过点,.图象如图所示:【点睛】本题考查一次函数的图象的作法,解题的关键是一次函数的图象是直线,确定两点即可画出直线.25、(1)①补图见解析;②证明见解析;(2)2BE=AD+CN,证明见解析;(3).【解析】分析:(1)①依照题意补全图形即可;②连接CE,由正方形以及等腰直角三角形的性质可得出∠ACD=∠MCN=45°,从而得出∠ACN=90°,再根据直角三角形的性质以及点E为AN的中点即可得出AE=CE,由此即可得出B、E在线段AC的垂直平分线上,由此即可证得BE⊥AC;(2)BE=AD+CN.根据正方形的性质可得出BF=AD,再结合三角形的中位线性质可得出EF=CN,由线段间的关系即可证出结论;(3)找出EN所扫过的图形为四边形DFCN.根据正方形以及等腰直角三角形的性质可得出BD∥CN,由此得出四边形DFCN为梯形,再由AB=1,可算出线段CF、DF、CN的长度,利用梯形的面积公式即可得出结论.详解:(1)①依题意补全图形,如图1所示.②证明:连接CE,如图2所示.∵四边形ABCD是正方形,∴∠BCD=90°,AB=BC,∴∠ACB=∠ACD=∠BCD=45°,∵∠CMN=90°,CM=MN,∴∠MCN=45°,∴∠ACN=∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论