版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省福州六中学2024年八年级数学第二学期期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.30° B.40° C.70° D.80°2.下列函数中,是的正比例函数的是()A. B. C. D.3.实数a、b在数轴上的位置如图,则化简﹣﹣的结果是()A.﹣2b B.﹣2a C.2b﹣2a D.04.化简的结果是A.+1 B. C. D.5.已知(a≠0,b≠0),下列变形错误的是()A. B.2a=3b C. D.3a=2b6.△ABC的三边分别是a,b,c,其对角分别是∠A,∠B,∠C,下列条件不能判定△ABC是直角三角形的是()A.BACB.a:b:c5:12:13C.b2a2c2D.A:B:C3:4:57.质量检查员随机抽取甲、乙、丙、丁四台机器生产的20个乒乓球的直径(规格是直径4cm),整理后的平均数和方差如下表,那么这四台机器生产的乒乓球既标准又稳定的是()机器甲乙丙丁平均数(单位:cm)4.013.983.994.02方差0.032.41.10.3A.甲 B.乙 C.丙 D.丁8.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,这组数据的中位数和众数分别是()A.10,12 B.12,11 C.11,12 D.12,129.如图,在△ABC中,∠C=90∘,∠A=30∘,CD=2,AB的垂直平分线MN交AC于D,连接BD,则AC的长是()A.4 B.3 C.6 D.510.如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD的值最小时,点P的坐标为()A.(﹣1,0) B.(﹣2,0) C.(﹣3,0) D.(﹣4,0)11.(11·大连)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则()A.甲比乙的产量稳定 B.乙比甲的产量稳定C.甲、乙的产量一样稳定 D.无法确定哪一品种的产量更稳定12.我省2013年的快递业务量为1.2亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2012年增速位居全国第一.若2015年的快递业务量达到2.5亿件,设2012年与2013年这两年的平均增长率为x,则下列方程正确的是()A.1.2(1+x)=2.5B.1.2(1+2x)=2.5C.1.2(1+x)2=2.5D.1.2(1+x)+1.2(1+x)2=2.5二、填空题(每题4分,共24分)13.一直角三角形的两条直角边分别是4cm和3cm,则其斜边上中线的长度为___________.14.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.15.小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得,接着活动学具成为图2所示正方形,并测得正方形的对角线,则图1中对角线AC的长为_____.16.计算或化简(1)(2)17.一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为__________.18.2名男生和2名女生抓阄分派2张电影票,恰好2名女生得到电影票的概率是.三、解答题(共78分)19.(8分)先化简,再求值:,其中,.20.(8分)在平面直角坐标系xOy中,已知一次函数的图象与x轴交于点,与轴交于点.(1)求,两点的坐标;(2)在给定的坐标系中画出该函数的图象;(3)点M(1,y1),N(3,y2)在该函数的图象上,比较y1与y2的大小.21.(8分)己知:如图1,⊙O的半径为2,BC是⊙O的弦,点A是⊙O上的一动点.图1图2(1)当△ABC的面积最大时,请用尺规作图确定点A位置(尺规作图只保留作图痕迹,不需要写作法);(2)如图2,在满足(1)条件下,连接AO并延长交⊙O于点D,连接BD并延长交AC的延长线于点E,若∠BAC=45°,求AC2+CE2的值.22.(10分)如图,若在△ABC的外部作正方形ABEF和正方形ACGH,求证:△ABC的高线AD平分线段FH23.(10分)某项工程由甲乙两队分别单独完成,则甲队用时是乙队的1.5倍:若甲乙两队合作,则需12天完成,请问:(1)甲,乙两队单独完成各需多少天;(2)若施工方案是甲队先单独施工天,剩下工程甲乙两队合作完成,若甲队施工费用为每天1.5万元,乙队施工费为每天3.5万元求施工总费用(万元)关于施工时间(天)的函数关系式(3)在(2)的方案下,若施工期定为15~18天内完成(含15和18天),如何安排施工方案使费用最少,最少费用为多少万元?24.(10分)下表是厦门市某品牌专卖店全体员工9月8日的销售量统计资料.销售量/件78101115人数13341(1)写出该专卖店全体员工9月8日销售量的众数;(2)求该专卖店全体员工9月8日的平均销售量.25.(12分)如图,在正方形ABCD中,点E为AB上的点(不与A,B重合),△ADE与△FDE关于DE对称,作射线CF,与DE的延长线相交于点G,连接AG,(1)当∠ADE=15°时,求∠DGC的度数;(2)若点E在AB上移动,请你判断∠DGC的度数是否发生变化,若不变化,请证明你的结论;若会发生变化,请说明理由;(3)如图2,当点F落在对角线BD上时,点M为DE的中点,连接AM,FM,请你判断四边形AGFM的形状,并证明你的结论。26.如图,在一块半径为R的圆形板材上,冲去半径为r的四个小圆,小刚测得R=6.8cm,r=1.6cm,请利用因式分解求出剩余阴影部分的面积(结果保留π)
参考答案一、选择题(每题4分,共48分)1、A【解析】
由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.【详解】∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°−∠A)÷2=70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC-∠ABE=30°,故选:A.【点睛】本题考查了线段垂直平分线的性质以及等腰三角形的性质,熟练掌握相关性质,运用数形结合思想是解题的关键.2、A【解析】
根据正比例函数的定义:一般地,形如是常数,的函数叫做正比例函数,其中叫做比例系数可选出答案.【详解】解:、是的正比例函数,故此选项正确;、是一次函数,故此选项错误;、是反比例函数,故此选项错误;、是一次函数,故此选项错误;故选:.【点睛】本题主要考查了正比例函数定义,关键是掌握正比例函数是形如是常数,的函数.3、A【解析】
根据数轴上点的位置关系,可得1>b>0>a>﹣1,根据二次根式的性质,绝对值的性质,可得答案.【详解】解:由数轴上点的位置关系,得1>b>0>a>﹣1,所以﹣﹣=﹣a﹣b﹣(b﹣a)=﹣a﹣b﹣b+a=﹣2b,故选:A.【点睛】本题考查了实数与数轴,利用数轴上点的位置关系得出1>b>0>a>﹣1是解题关键.4、D【解析】试题分析:.故选D.5、B【解析】
根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】解:由得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选B.【点睛】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.6、D【解析】
根据三角形内角和定理判断A、D即可;根据勾股定理的逆定理判断B、C即可.【详解】A、∵∠B=∠A-∠C,∴∠B+∠C=∠A,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,即△ABC是直角三角形,故本选项错误;B、∵52+122=132,∴△ABC是直角三角形,故本选项错误;C、∵b2-a2=c2,∴b2=a2+c2,∴△ABC是直角三角形,故本选项错误;D、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形,故本选项正确;故选D.【点睛】本题考查了三角形内角和定理,勾股定理的逆定理的应用,主要考查学生的计算能力和辨析能力.7、A【解析】
先比较出平均数,再根据方差的意义即可得出答案.【详解】解:由根据方差越小越稳定可知,甲的质量误差小,故选:A.【点睛】此题考查方差的意义.解题关键在于掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8、C【解析】试题分析:将原数据按由小到大排列起来,处于最中间的数就是中位数,如果中间有两个数,则中位数就是两个数的平均数;众数是指在这一组数据中出现次数最多的数.考点:众数;中位数9、C【解析】
由MN是AB的垂直平分线,即可得AD=BD,根据等腰三角形的性质,即可求得∠DBA的度数,又由直角三角形的性质,求得∠CBD=∠ABD=30°,然后根据角平分线的性质,求得DN的值,继而求得AD的值,则可求得答案.【详解】∵MN是AB的垂直平分线,∴AD=BD,DN⊥AB,∴∠DBA=∠A=30°,∵∠C=90°,∴∠ABC=90°−∠A=60°,∴∠CBD=∠ABD=30°,∴DN=CD=2,∴AD=2DN=4,∴AC=AD+CD=6.故选:C.【点睛】此题考查线段垂直平分线的性质,含30度角的直角三角形,解题关键在于求得∠DBA10、B【解析】
根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.【详解】作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图.令y=x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣8,∴点A的坐标为(﹣8,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣4,1),点D(0,1).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣1).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣4,1),D′(0,﹣1),∴,解得:,∴直线CD′的解析式为y=﹣x﹣1.令y=0,则0=﹣x﹣1,解得:x=﹣1,∴点P的坐标为(﹣1,0).故选:B.【点睛】本题考查了待定系数法求函数解析式、一次函数图象上点的坐标特征以及轴对称中最短路径问题,解题的关键是求出直线CD′的解析式.本题属于基础题,难度不大,解决该题型题目时,找出点的坐标利用待定系数法求出函数解析式是关键.11、A【解析】【分析】方差是刻画波动大小的一个重要的数字.与平均数一样,仍采用样本的波动大小去估计总体的波动大小的方法,方差越小则波动越小,稳定性也越好.【详解】因为s=0.002<s=0.03,所以,甲比乙的产量稳定.故选A【点睛】本题考核知识点:方差.解题关键点:理解方差意义.12、C【解析】试题解析:设2015年与2016年这两年的平均增长率为x,由题意得:1.2(1+x)2=2.5,故选C.二、填空题(每题4分,共24分)13、cm【解析】【分析】先利用勾股定理求出直角三角形的斜边长,然后再根据直角三角形斜边中线的性质进行解答即可.【详解】直角三角形的斜边长为:=5cm,所以斜边上的中线长为:cm,故答案为:cm.【点睛】本题考查了勾股定理、直角三角形斜边中线,熟知直角三角形斜边中线等于斜边的一半是解题的关键.14、一【解析】试题分析:首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案.∵点M(k﹣1,k+1)关于y轴的对称点在第四象限内,∴点M(k﹣1,k+1)位于第三象限,∴k﹣1<0且k+1<0,解得:k<﹣1,∴y=(k﹣1)x+k经过第二、三、四象限,不经过第一象限考点:一次函数的性质15、【解析】
如图1,2中,连接.在图2中,利用勾股定理求出,在图1中,只要证明是等边三角形即可解决问题.【详解】解:如图1,2中,连接.在图2中,四边形是正方形,,,∵,cm,在图1中,四边形ABCD是菱形,,,是等边三角形,cm,故答案为:.【点睛】本题考查菱形的性质、正方形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16、(1);【解析】
(1)根据根式的计算法则计算即可.(2)采用平方差公式计算即可.【详解】(1)原式(2)原式【点睛】本题主要考查根式的计算,这是必考题,应当熟练掌握.17、x<1【解析】解:∵y=kx+b,kx+b<0,∴y<0,由图象可知:x<1.故答案为x<1.18、.【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好2名女生得到电影票的情况,再利用概率公式求解即可求得答案.解:画树状图得:∵共有12种等可能的结果,恰好2名女生得到电影票的有2种情况,∴恰好2名女生得到电影票的概率是:=.故答案为:.三、解答题(共78分)19、;.【解析】
根据分式的减法和除法可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【详解】解:(-)÷====,当a=+,b=-时,原式===.【点睛】本题考查分式的化简求值、分母有理化,解答本题的关键是明确分式化简求值的计算方法.20、(1)点A的坐标为,点B的坐标为(2)图形见解析(3)【解析】试题分析:令y=0,则x=2;令x=0,则y=1,即可得A,B两点的坐标;(2)连接AB即可得该函数的图象;(3)根据一次函数的性质即可求得结论.试题解析:(1)令,则;令,则.∴点A的坐标为,点B的坐标为.(2)如图:(3)21、(1)见解析;(1)2.【解析】
(1)作BC的垂直平分线交优弧BC于A,则点A满足条件;
(1)利用圆周角定理得到∠ACD=90°,根据圆内接四边形的性质得∠CDE=∠BAC=45°,通过判断△DCE为等腰直角三角形得到CE=CD,然后根据勾股定理得到AC1+CE1=AC1+CD1=AD1.【详解】解:(1)如图1,点A为所作;
(1)如图1,连接CD,∵AD为直径,
∴∠ACD=90°,
∵∠CDE=∠BAC=45°,
∴△DCE为等腰直角三角形,
∴CE=CD,
∴AC1+CE1=AC1+CD1=AD1=41=2.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.22、见解析.【解析】
从H作HQ⊥AD于Q,从F作FP⊥AD于P,分别证明△ADC≌△QAH,△ABD≌△FAP得出FP=QH,证明△FMP≌△HMQ,得出FM=MH,从而得出结论.【详解】从H作HQ⊥AD于Q,从F作FP⊥AD于P,∵ACGH为正方形∴∠QAH+∠DAC=90°,AH=AC,∵AD为△ABC的高线∴∠ADC=90°,∠DAC+∠DCA=90°,∴∠QAH=∠DCA∵HQ⊥AD∵∠AQH=90°,∴∠AQH=∠ADC∵AH=AC,∠QAH=∠DCA,∠AQH=∠ADC∴△ADC≌△QAH∴QH=AD,同理可证,△ABD≌△FAP,∴FP=AD,∴QH=FP,又∵∠FPM=∠AQH=90°,∠FMP=∠QMH∴△FMP≌△HMQ,∴FM=MH,∴△ABC的高线AD所在直线平分线段FH【点睛】本题考查正方形的性质,三角形全等的判定和性质.要证明两条线段全等,如果这两条线段在同一个三角形中,常用等角对等边去证明;如果这两条线段不在同一三角形中,那么一般要证明它们所在的三角形全等,如果不存在这样的三角形,那么就要辅助线,构造全等三角形.23、(1)甲、乙两队单独完成分别需30天,20天;(2)y=0.5x+60;(3)甲队先施工10天,再甲乙合作8天,费用最低为55万元【解析】
(1)设乙队单独完成需a天,则甲队单独完成需1.5a天,根据题意列出方程即可求解;(2)设甲乙合作完成余下部分所需时间为w天,根据题意得到w与x的关系,根据题意即可写出y与x的关系式;(3)根据施工期定为15~18天内完成得到x的取值范围,再根据一次函数的性质求出y的最小值.【详解】(1)设乙队单独完成需a天,则甲队单独完成需1.5a天,根据题意列:,解得,a=20,经检验:a=20是所列方程的根,且符合题意,所以1.5a=30,答:甲、乙两队单独完成分别需30天,20天;(2)设甲乙合作完成余下部分所需时间为w天,依题意得,解得,w=x+12∴y=1.5x+(1.5+3.5)(x+12)=-0.5x+60;(3)由题可得15≤xx+12≤18,解得5≤x≤10,∵y=-0.5x+60中k<0,∴y随x的增大而减小,∴当x=10时,y最小=-0.5×10+60=55,此时,甲队先施工10天,再甲乙合作8天,费用最低为55万元.【点睛】此题主要考查分式方程的应用和解法,一次函数的性质等知识,正确的列出分式方程、求出费用与时间之间的函数关系式是解决问题的关键.24、(1)该专卖店全体员工9月8日销售量的众数是件;(2)该专卖店全体员工9月8日的平均销售量是件.【解析】
(1)由题意直接根据众数的定义进行分析求解可得;(2)由题意直接根据加权平均数的定义列式并进行计算可得.【详解】解:(1)该专卖店全体员工9月8日销售量的众数是件.答:该专卖店全体员工9月8日销售量的众数是件.(2)(件)答:该专卖店全体员工9月8日的平均销售量是件.【点睛】本题主要考查众数和加权平均数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.25、(1)∠DGC=45°;(2)∠DGC=45°不会变化;(3)四边形AGFM是正方形【解析】
(1)根据对称性及正方形性质可得∠CDF=60°=∠DFC,再利用三角形外角∠DFC=∠FDE+∠DPF可求∠DPC度数;(2)由(1)知△DFC为等腰三角形,得出DF=DC,求出∠DFC=45º+∠EDF,由∠DFC=∠DGC+∠EDF可得∠DGC=45º;(3)证明FG=MF=MA=AG,∠AGF=90º,即可得出结论.【详解】(1)△FDE与ADE关于DE对称∴△FDE≌△ADE∴∠FDE=∠ADE=15º
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年无人机安防监控系统采购合同2篇
- 2025版委托持股业务尽职调查与风险评估合同3篇
- 2025版塔吊租赁合同解除及赔偿协议6篇
- 2025版小企业劳动合同修订与完善建议5篇
- 光纤通信在高速铁路信号系统中的应用考核试卷
- 《企业文化圣经》课件
- 初中生财经素养的培养与财经知识普及教育的实践探索策略考核试卷
- 人力资源管理培训课程课件-高效招聘与面试技巧
- 2025版高端商务区门面房使用权购买合同4篇
- 2025版商业地产物业委托居间合同范本3篇
- 2024年苏州工业园区服务外包职业学院高职单招职业适应性测试历年参考题库含答案解析
- 人教版初中语文2022-2024年三年中考真题汇编-学生版-专题08 古诗词名篇名句默写
- 2024-2025学年人教版(2024)七年级(上)数学寒假作业(十二)
- 山西粤电能源有限公司招聘笔试冲刺题2025
- 医疗行业软件系统应急预案
- 使用错误评估报告(可用性工程)模版
- 《精密板料矫平机 第2部分:技术规范》
- 2024光伏发电工程交流汇流箱技术规范
- 旅游活动碳排放管理评价指标体系构建及实证研究
- 2022年全国职业院校技能大赛-电气安装与维修赛项规程
- 2024年黑龙江省政工师理论知识考试参考题库(含答案)
评论
0/150
提交评论