陕西省滨河2024年八年级数学第二学期期末学业质量监测模拟试题含解析_第1页
陕西省滨河2024年八年级数学第二学期期末学业质量监测模拟试题含解析_第2页
陕西省滨河2024年八年级数学第二学期期末学业质量监测模拟试题含解析_第3页
陕西省滨河2024年八年级数学第二学期期末学业质量监测模拟试题含解析_第4页
陕西省滨河2024年八年级数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省滨河2024年八年级数学第二学期期末学业质量监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.满足下列条件的三角形中,不是直角三角形的是()A.三内角的度数之比为1∶2∶3B.三内角的度数之比为3∶4∶5C.三边长之比为3∶4∶5D.三边长的平方之比为1∶2∶32.计算的结果为()A. B.±5 C.-5 D.53.如图,矩形的面积为,反比例函数的图象过点,则的值为()A. B. C. D.4.如图,在矩形ABCD中,AB=8,BC=6,EF经过对角线的交点O,则图中阴影部分的面积是()A.6 B.12 C.15 D.245.若=﹣a,则a的取值范围是()A.﹣3≤a≤0 B.a≤0 C.a<0 D.a≥﹣36.下列说法中,错误的是()A.平行四边形的对角线互相平分 B.菱形的对角线互相垂直C.矩形的对角线相等 D.正方形的对角线不一定互相平分7.下列各式属于最简二次根式的有()A. B. C. D.8.“”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害,2.5微米即0.0000025米.将0.0000025用科学记数法表示为()A. B. C. D.9.在下述命题中,真命题有()(1)对角线互相垂直的四边形是菱形;(2)三个角的度数之比为的三角形是直角三角形;(3)对角互补的平行四边形是矩形;(4)三边之比为的三角形是直角三角形..A.个 B.个 C.个 D.个10.下列条件中,不能判定四边形是正方形的是()A.对角线互相垂直且相等的四边形 B.一条对角线平分一组对角的矩形C.对角线相等的菱形 D.对角线互相垂直的矩形11.△ABC中,AB=13,AC=15,高AD=12,则BC的长为()A.14 B.4 C.14或4 D.以上都不对12.下列四组线段中,可以构成直角三角形的是()A.2,3,4 B.3,4,5 C.4,5,6 D.7,8,9二、填空题(每题4分,共24分)13.如图,点A,B分别在x轴、y轴上,点O关于AB的对称点C在第一象限,将△ABC沿x轴正方向平移k个单位得到△DEF(点B与E是对应点),点F落在双曲线y=kx上,连结BE交该双曲线于点G.∠BAO=60°,OA=2GE,则k的值为________14.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:.“解密世园会”、.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择条线路游览,每条线路被选择的可能性相同.李欣和张帆恰好选择同线路游览的概率为_______.15.若关于的方程有增根,则的值为________.16.如图所示,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于_______.17.计算:的结果是________.18.如图,将矩形纸片ABCD沿直线AF翻折,使点B恰好落在CD边的中点E处,点F在BC边上,若CD=6,则AD=__________.三、解答题(共78分)19.(8分)如图,△ABC中,∠ACB=90°,D.E分别是BC、BA的中点,联结DE,F在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.20.(8分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况,并统计绘制成了如图两幅不完整的条形统计图和扇形统计图,请根据所提供的信息,解答下列问题:(1)本次共抽查学生人,并将条形图补充完整;(2)捐款金额的众数是,中位数是;(3)在八年级850名学生中,捐款20元及以上(含20元)的学生估计有多少人?21.(8分)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.22.(10分)两摞相同规格的饭碗整齐地叠放在桌面上,如图,请根据图中给出的数据信息,解答问题:(1)求整齐叠放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式(不要求写出自变量x的取值范围);(2)若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度.23.(10分)我市某风景区门票价格如图所示,有甲、乙两个旅行团队,计划在端午节期间到该景点游玩,两团队游客人数之和为100人,乙团队人数不超过40人.设甲团队人数为人,如果甲、乙两团队分别购买门票,两团队门票款之和为元.(1)直接写出关于的函数关系式,并写出自变的取值范围;(2)若甲团队人数不超过80人,计算甲、乙两团队联合购票比分别购票最多可节约多少钱?(3)端午节之后,该风景区对门票价格作了如下调整:人数不超过40人时,门票价格不变,人数超过40人但不超过80人时,每张门票降价元;人数超过80人时,每张门票降价元.在(2)的条件下,若甲、乙两个旅行团端午节之后去游玩联合购票比分别购票最多可节约3900元,求的值.24.(10分)六•一前夕,某幼儿园园长到厂家选购A、B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍.(1)求A、B两种品牌服装每套进价分别为多少元;(2)该服装A品牌每套售价为130元,B品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A品牌的服装多少套.25.(12分)已知方程组的解中,x为非正数,y为负数.(1)求a的取值范围;(2)化简|a﹣3|+|a+2|.26.解不等式组:,并把它的解集在数轴上表示出来.

参考答案一、选择题(每题4分,共48分)1、B【解析】试题解析:A、因为根据三角形内角和定理可求出三个角分别为30度,60度,90度,所以是直角三角形;

B、根据三角形内角和定理可求出三个角分别为45度,60度,75度,所以不是直角三角形;

C、因为32+42=52,符合勾股定理的逆定理,所以是直角三角形;

D、因为1+2=3,所以是直角三角形.

故选B.2、D【解析】

根据二次根式的性质进行化简即可判断.【详解】解:=1.故选:D.【点睛】本题考查了二次根式的化简,关键是理解以下几点:①定义:一般地,形如(a≥0)的代数式叫做二次根式.当a>0时,表示a的算术平方根;当a=0时,=0;当a<0时,②性质:=|a|.3、B【解析】

由于点A是反比例函数上一点,矩形ABOC的面积,再结合图象经过第二象限,则k的值可求出.【详解】由题意得:,又双曲线位于第二象限,则,

所以B选项是正确的.【点睛】本题主要考查反比例函数y=kx中k几何意义,这里体现了数形结合的数形,关键在于理解k的几何意义.4、B【解析】试题解析:在△AOE和△COF中,∠EAO=∠FCO,AO=CO,∠COF=∠EOA,∴△AOE≌△COF,则△AOE和△COF面积相等,∴阴影部分的面积与△CDO的面积相等,又∵矩形对角线将矩形分成面积相等的四部分,∴阴影部分的面积为=1.故选B.考点:矩形的性质.5、A【解析】

根据二次根式的性质列出不等式,解不等式即可解答.【详解】∵==﹣a,∴a≤0,a+3≥0,∴﹣3≤a≤0.故选A.【点睛】本题考查二次根式的性质,根据二次根式的性质列出不等式是解题的关键.6、D【解析】

用平行四边形对角线互相平分,菱形对角线互相垂直平分,矩形对角线相等且互相平分,正方形对角线互相垂直平分且相等进行判断即可.【详解】解:A.平行四边形的对角线互相平分,本选项正确;B.菱形的对角线互相垂直,本选项正确;C.矩形的对角线相等,本选项正确;D.正方形的对角线一定互相平分,故该选项错误.故选D.【点睛】本题考查特殊平行四边形的性质,掌握平行四边形对角线互相平分,菱形对角线互相垂直平分,矩形对角线相等且互相平分,正方形对角线互相垂直平分且相等的性质进行判断是解题关键.7、B【解析】

先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.【详解】A选项:,故不是最简二次根式,故A选项错误;B选项:是最简二次根式,故B选项正确;C选项:,故不是最简二次根式,故本选项错误;D选项:,故不是最简二次根式,故D选项错误;

故选:B.【点睛】考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.8、D【解析】

根据科学计数法的表示方法即可求解.【详解】0.0000025=故选D.【点睛】此题主要考查科学计数法的表示,解题的关键是熟知科学计数法的表示方法.9、C【解析】

根据矩形、菱形、直角三角形的判定定理对四个选项逐一分析.【详解】解:(1)对角线平分且互相垂直的四边形是菱形,故错误;(2)180°÷8×4=90°,故正确;(3)∵平行四边形的对角相等,又互补,∴每一个角为90°∴这个平行四边形是矩形,故正确;(4)设三边分别为x,x:2x,∵∴由勾股定理的逆定理得,这个三角形是直角三角形,故正确;∴真命题有3个,故选:C.【点睛】本题考查的知识点:矩形、菱形、直角三角形的判定,解题的关键是熟练掌握这几个图形的判定定理.10、A【解析】

根据正方形的判定方法逐项判断即可.【详解】对角线互相垂直且相等的四边形不一定是平行四边形,故A不能判定,由矩形的一条对角线平分一组对角可知该四边形也是菱形,故B能判定,由菱形的对角线相等可知该四边形也是矩形,故C能判定,由矩形的对角线互相垂直可知该四边形也是菱形,故D能判定,故选A.【点睛】本题主要考查正方形的判定,掌握正方形既是矩形也是菱形是解题的关键.11、C【解析】

分两种情况:△ABC是锐角三角形和△ABC是钝角三角形,都需要先求出BD,CD的长度,在锐角三角形中,利用求解;在钝角三角形中,利用求解.【详解】(1)若△ABC是锐角三角形,在中,∵由勾股定理得在中,∵由勾股定理得∴(2)若△ABC是钝角三角形,在中,∵由勾股定理得在中,∵由勾股定理得∴综上所述,BC的长为14或4故选:C.【点睛】本题主要考查勾股定理,掌握勾股定理并分情况讨论是解题的关键.12、B【解析】

不能构成直角三角形,故A选项错误;可以构成直角三角形,故B选项正确;不能构成直角三角形,故C选项错误;不能构成直角三角形,故D选项错误;故选B.【点睛】如果两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.二、填空题(每题4分,共24分)13、25【解析】

设OA等于2m,由对称图形的特点,和勾股定理等把C点和B点坐标用含m的代数式来表示,F、E、G是由△ABC平移K个单位得到,坐标可以用含m和k的代数式表示,因为G、F在双曲线上,所以其横纵坐标的乘积都为k,据此列两个关系式,先求出m的值,从而可求k的值.【详解】如图:作CH垂直于x轴,CK垂直于y轴,由对称图形的特点知,CA=OA,设OA=2m,∵∠BAO=60°,∴OB=23m,AC=2m,∠CAH=180°-60°-60°=60∴AH=m,CH=3m∴C点坐标为(3m,3m则F点坐标为(3m+k,3mF点在双曲线上,则(3m+k)×3m=kB点坐标为(0,23m则E点坐标为(k,23mG点坐标为(k-m,23m则(k-m)×23m=k,∴(3m+k)×3m=(k-m)×23m,整理得k=5m,代入(k-m)23m=k中,得4m×23m=5m,即m=0(舍去),m=53则k=5m=25故答案为:253【点睛】本题考查了平面直角坐标系中反比例函数与三角形的综合,灵活运用反比例函数的解析式与点的坐标间的关系是解题的关键.14、【解析】

画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.【详解】画树状图分析如下:共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,∴李欣和张帆恰好选择同一线路游览的概率为.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.15、;【解析】

先将m视为常数求解分式方程,得出方程关于m的解,再根据方程有增根判断m的值.【详解】去分母得:2x+1-x-2=m解得:x=m+1∵分式方程有增根∴x=-2∴m+1=-2解得:m=-1故答案为;-1.【点睛】本题考查解分式方程增根的情况,注意当方程中有字母时,我们通常是将字母先视为常数进行计算,后续再讨论字母的情况.16、1【解析】

先根据平移的性质可得,,,再根据矩形的判定与性质可得,从而可得,然后根据平行线四边形的判定可得四边形ABED是平行四边形,最后根据平行四边形的面积公式即可得.【详解】由平移的性质得,,四边形ACFD是矩形四边形ABED是平行四边形(一组对边平行且相等的四边形是平行四边形)则四边形ABED的面积为故答案为:1.【点睛】本题考查了平移的性质、平行四边形的判定、矩形的判定与性质等知识点,掌握平移的性质是解题关键.17、4【解析】

按照二次根式的乘、除运算法则运算即可求解.【详解】解:原式=故答案为:4.【点睛】本题考查二次根式的乘除运算法则,熟练掌握运算公式是解决此类题的关键.18、3【解析】

由矩形的性质可得AB=CD=6,再由折叠的性质可得AE=AB=6,在Rt△ADE中,根据勾股定理求得AD的长即可.【详解】∵纸片ABCD为矩形,∴AB=CD=6,∵矩形纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF,∴AE=AB=6,∵E为DC的中点,∴DE=3,在Rt△ADE中,AE=6,DE=3,由勾股定理可得,AD=故答案为:.【点睛】本题考查了矩形的性质、折叠的性质及勾股定理,正确求得AE=6、DE=3是解决问题的关键.三、解答题(共78分)19、(1)证明见解析;(2)30°.【解析】

(1)由直角三角形斜边上的中线等于斜边的一半,得到CE=AE=BE,从而得到AF=CE,再由等腰三角形三线合一,得到∠1=∠2,从而有∠F=∠3,得到∠2=∠F,故CE∥AF,然后利用一组对边平行且相等的四边形是菱形证明;(2)由菱形的性质,得到AC=CE,求出AC=CE=AE,从而得到△AEC是等边三角形,得出∠CAE=60°,然后根据直角三角形两锐角互余解答.【详解】解:(1)∵∠ACB=90°,E是BA的中点,∴CE=AE=BE,∵AF=AE,∴AF=CE,在△BEC中,∵BE=CE且D是BC的中点,∴ED是等腰△BEC底边上的中线,∴ED也是等腰△BEC的顶角平分线,∴∠1=∠2,∵AF=AE,∴∠F=∠3,∵∠1=∠3,∴∠2=∠F,∴CE∥AF,又∵CE=AF,∴四边形ACEF是平行四边形;(2)∵四边形ACEF是菱形,∴AC=CE,由(1)知,AE=CE,∴AC=CE=AE,∴△AEC是等边三角形,∴∠CAE=60°,在Rt△ABC中,∠B=90°﹣∠CAE=90°﹣60°=30°.【点睛】本题考查菱形的性质;平行四边形的判定.20、(1)10,将条形图补充完整见解析;(2)众数是10,中位数是12.1;(3)捐款20元及以上(含20元)的学生有187人.【解析】分析:(1)由题意可知,捐款11元的有14人,占捐款总人数的28%,由此可得总人数,将捐款总人数减去捐款1、11、20、21元的人数可得捐10元的人数;(2)从条形统计图中可知,捐款10元的人数最多,可知众数,将这组数据按照从小到大的顺序排列,处于中间位置的数就是这组数据的中位数;(3)由抽取的样本可知,用捐款20及以上的人数所占比例估计总体中的人数.详解:(1)本次抽查的学生有:14÷28%=10(人),则捐款10元的有10﹣9﹣14﹣7﹣4=16(人),补全条形统计图图形如下:故答案为:10;(2)由条形图可知,捐款10元人数最多,故众数是10;将这组数据按照从小到大的顺序排列,中间两个数据分别是10,11,所以中位数是(10+11)÷2=12.1.故答案为:10,12.1;(3)捐款20元及以上(含20元)的学生有:810×=187(人).点睛:本题主要考查了条形统计图,扇形统计图,众数和中位数,用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.21、(1)C(0,1).(2)y=x+1.(3)P1(4,3),P2()P3(),P4().【解析】试题分析:(1)通过解方程x2﹣14x+42=0可以求得OC=1,OA=2.则C(0,1);(2)设直线MN的解析式是y=kx+b(k≠0).把点A、C的坐标分别代入解析式,列出关于系数k、b的方程组,通过解方程组即可求得它们的值;(3)需要分类讨论:PB为腰,PB为底两种情况下的点P的坐标.根据等腰三角形的性质、两点间的距离公式以及一次函数图象上点的坐标特征进行解答.试题解析:(1)解方程x2-14x+42=0得x1=1,x2=2∵OA,OC(OA>OC)的长分别是一元二次方程x2-14x+42=0的两个实数根∴OC=1,OA=2∴C(0,1)(2)设直线MN的解析式是y=kx+b(k≠0)由(1)知,OA=2,则A(2,0)∵点A、C都在直线MN上∴解得,∴直线MN的解析式为y=-x+1(3)∵A(2,0),C(0,1)∴根据题意知B(2,1)∵点P在直线MNy=-x+1上∴设P(a,--a+1)当以点P,B,C三点为顶点的三角形是等腰三角形时,需要分类讨论:①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P1(4,3);②当PC=BC时,a2+(-a+1-1)2=14解得,a=±,则P2(-,),P3(,)③当PB=BC时,(a-2)2+(-a+1-1)2=14解得,a=,则-a+1=-∴P4(,)综上所述,符合条件的点P有:P1(4,3),P2(-,),P3(,),P4(,-)考点:一次函数综合题.22、(1);(2)22.1【解析】

(1)使用待定系数法列出方程组求解即可.(2)把x=12代入(1)中的函数关系式,就可求解.【详解】(1)设函数关系式为y=kx+b,根据题意得解得∴y与x之间的函数关系式为y=1.1x+4.1.(2)当x=12时,y=1.1×12+4.1=22.1.∴桌面上12个整齐叠放的饭碗的高度是22.1cm.【点睛】本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从情景中提取信息、解释信息、解决问题的能力.23、(1)当时,;当时,;(2)甲、乙两团队联合购票比分别购票最多可节约1800元;(3)的值为15.【解析】

(1)由乙团队人数不超过40人,讨论x的取值范围,得到分段函数;(2)由(1)在甲团队人数不超过80人时,讨论的最大值与联合购票费用相减即可;(3)在(2)的基础上在购票单价减去a元,经过讨论,得到含有a的购票最大费用,两个团队联合购票费用为100(120-2a),根据题意构造方程.【详解】解:(1)由题意乙团队人数为人,则,,当时,当时,(2)由(1)甲团队人数不超过80人∵,∴随增大而减小,∴当时,,当两团队联合购票时购票费用为甲、乙两团队联合购

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论