河南省安阳市一中学2024届数学八年级下册期末质量跟踪监视模拟试题含解析_第1页
河南省安阳市一中学2024届数学八年级下册期末质量跟踪监视模拟试题含解析_第2页
河南省安阳市一中学2024届数学八年级下册期末质量跟踪监视模拟试题含解析_第3页
河南省安阳市一中学2024届数学八年级下册期末质量跟踪监视模拟试题含解析_第4页
河南省安阳市一中学2024届数学八年级下册期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省安阳市一中学2024届数学八年级下册期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.据有关实验测定,当室温与人体正常体温(37℃)的比值为黄金比时,人体感到最舒适,这个室温约(精确到1℃)()A.21℃ B.22℃ C.23℃ D.24℃2.已知下列图形中的三角形顶点都在正方形网格的格点上,图中的三角形是直角三角形的是()A. B.C. D.3.式子的值()A.在2到3之间 B.在3到4之间 C.在4到5之间 D.等于344.正方形有而矩形不一定有的性质是()A.四个角都是直角 B.对角线相等C.对角线互相平分 D.对角线互相垂直5.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4 B.6 C.8 D.106.如图,已知两直线l1:y=x和l2:y=kx﹣5相交于点A(m,3),则不等式x≥kx﹣5的解集为()A.x≥6 B.x≤6 C.x≥3 D.x≤37.根据下表中一次函数的自变量x与函数y的对应值,可得p的值为()x

-2

0

1

y

3

p

0

A.1 B.-1 C.3 D.-38.某居民今年1至6月份(共6个月)的月平均用水量5t,其中1至5月份月用水量(单位:t)统计如图所示,根据表中信息,该户今年1至6月份用水量的中位数和众数分别是()A.4,5 B.4.5,6 C.5,6 D.5.5,69.如图,在□ABCD中,已知AD=8cm,AB=5cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm10.下列说法正确的是()A.明天的天气阴是确定事件B.了解本校八年级(2)班学生课外阅读情况适合作抽查C.任意打开八年级下册数学教科书,正好是第5页是不可能事件D.为了解高港区262846人的体质情况,抽查了5000人的体质情况进行统计分析,样本容量是500011.化简的结果是()A.2 B.-2 C. D.412.下列计算结果正确的是A. B. C. D.二、填空题(每题4分,共24分)13.如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件_____,使四边形ABCD为矩形.14.若关于x的一元一次不等式组有解,则m的取值范围为__________.15.将直线沿y轴向上平移5个单位长度后,所得图象对应的函数关系式为_________.16.如图,将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°的三角板的一条直角边重合,则∠1的度数为______.17.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于的二元一次方程组的解是_____.18.如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=20°,则∠2=_____.三、解答题(共78分)19.(8分)如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.20.(8分)如图,四边形ABCD是正方形,点E是边BC上的一点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)如图1,当点E是BC的中点时,猜测AE与EF的关系,并说明理由.(2)如图2,当点E是边BC上任意一点时,(1)中所猜测的AE与EF的关系还成立吗?请说明理由.21.(8分)正比例函数和一次函数的图象都经过点,且一次函数的图象交轴于点.(1)求正比例函数和一次函数的表达式;(2)在如图所示的平面直角坐标系中分别画出这两个函数的图象;(3)求出的面积.22.(10分)如图中的虚线网格我们称为正三角形网格,它的每一个小三角形都是边长为1个单位长度的正三角形,这样的三角形称为单位正三角形.(1)图①中,已知四边形ABCD是平行四边形,求△ABC的面积和对角线AC的长;(2)图②中,求四边形EFGH的面积.23.(10分)请阅读材料,并完成相应的任务.阿波罗尼奥斯(约公元前262~190年),古希腊数学家,与欧几里得、阿基米德齐名.他的著作《圆锥曲线论》是古代世界光辉的科学成果,可以说是代表了希腊几何的最高水平.阿波罗尼奧斯定理,是欧氏几何的定理,表述三角形三边和中线的长度关系,即三角形任意两边的平方和等于第三边的一半与该边中线的平方和的2倍.(1)下面是该结论的部分证明过程,请在框内将其补充完整;已知:如图1所示,在锐角中,为中线..求证:证明:过点作于点为中线设,,,在中,在中,__________在中,____________________(2)请直接利用阿波罗尼奧斯定理解决下面问题:如图2,已知点为矩形内任一点,求证:(提示:连接、交于点,连接)24.(10分)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON;(2)若正方形ABCD的边长为6,OE=EM,求MN的长.25.(12分)如图,某项研究表明,大拇指与小拇指尽量张开时,两指尖的距离称为指距.如表是测得的指距与身高的一组数据:指距d(cm)192021身高h(cm)151160169(1)你能确定身高h与指距d之间的函数关系式吗?(2)若某人的身高为196cm,一般情况下他的指距应是多少?26.在菱形ABCD中,∠BAD=60°.(1)如图1,点E为线段AB的中点,连接DE,CE,若AB=4,求线段EC的长;(2)如图2,M为线段AC上一点(M不与A,C重合),以AM为边,构造如图所示等边三角形AMN,线段MN与AD交于点G,连接NC,DM,Q为线段NC的中点,连接DQ,MQ,求证:DM=2DQ.

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据黄金比的值可知,人体感到最舒适的温度应为37℃的0.1倍.【详解】解:根据黄金比的值得:37×0.1≈23℃.故选C.【点睛】本题考查了黄金分割的知识,解答本题的关键是要熟记黄金比的值为≈0.1.2、D【解析】

根据勾股定理求出三角形的三边,然后根据勾股定理的逆定理即可判断.【详解】由勾股定理可得:A、三角形三边分别为3、,2;B、三角形三边分别为、,2;C、三角形三边分别为、2,3;D、三角形三边分别为2、,;∵D图中(2)2+()2=()2,其他三角形不符合勾股定理逆定理,∴图中的三角形是直角三角形的是D,故选:D.【点睛】此题考查了勾股定理和勾股定理逆定理的运用,本题中根据勾股定理计算三角形的三边长是解题的关键.3、C【解析】分析:根据数的平方估出介于哪两个整数之间,从而找到其对应的点.详解:∵,∴4<<5,故选C.点睛:本题考查了无理数的估算以及数轴上的点和数之间的对应关系,解题的关键是求出介于哪两个整数之间.4、D【解析】

根据正方形与矩形的性质对各选项分析判断后利用排除法求解.【详解】解:A、正方形和矩形的四个角都是直角,故本选项错误;B、正方形和矩形的对角线相等,故本选项错误;C、正方形和矩形的对角线互相平分,故本选项错误;D、正方形的对角线互相垂直平分,矩形的对角线互相平分但不一定垂直,故本选项正确.故选D.【点睛】本题考查了正方形和矩形的性质,熟记性质并正确区分是解题的关键.5、A【解析】

根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值.【详解】解:根据勾股定理可得a2+b2=9,四个直角三角形的面积是:ab×1=9﹣1=8,即:ab=1.故选A.考点:勾股定理.6、B【解析】

首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式x≥kx-5的解集即可.【详解】解:将点A(m,3)代入y=得,=3,解得,m=1,所以点A的坐标为(1,3),由图可知,不等式≥kx-5的解集为x≤1.故选:B.【点睛】此题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.关键是求出A点坐标以及利用数形结合的思想.7、A【解析】设一次函数的解析式为y=kx+b,将表格中的对应的x,y的值(-2,3),(1,0)代入得:,解得:.∴一次函数的解析式为y=-x+1.当x=0时,得y=1.故选A.8、D【解析】

先根据平均数的定义求出6月份的用水量,再根据中位数和众数的定义求解可得.【详解】解:根据题意知6月份的用水量为5×6-(3+6+4+5+6)=6(t),

∴1至6月份用水量从小到大排列为:3、4、5、6、6、6,

则该户今年1至6月份用水量的中位数为=5.5、众数为6,

故选D.【点睛】本题主要考查众数和中位数,解题的关键是根据平均数定义求出6月份用水量及众数和中位数的定义.9、C【解析】

根据在□ABCD中,AE平分∠BAD,得到∠BAE=∠AEB,即AB=BE,即可求出EC的长度.【详解】∵在□ABCD中,AE平分∠BAD,∴∠DAE=∠BAE,∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∵AD=8cm,AB=5cm,∴BE=5cm,BC=8cm,∴CE=8-5=3cm,故选C.【点睛】本题是对平行四边形知识的考查,熟练掌握平行四边形性质及角平分线知识是解决本题的关键.10、D【解析】

根据必然事件、不可能事件、随机事件的概念可区别各类事件,从而判定选项A、C的正误;根据普查和抽样调查的意义可判断出B的正误;根据样本容量的意义可判断出D的正误.【详解】解:A、明天的天气阴是随机事件,故错误;

B、了解本校八年级(2)班学生课外阅读情况适合普查,故错误;

C、任意打开八年级下册数学教科书,正好是第5页是随机事件,故错误;

D、为了解高港区262846人的体质情况,抽查了5000人的体质情况进行统计分析,样本容量是5000,故正确;故选:D.【点睛】本题考查了必然事件、不可能事件、随机事件的概念,普查和抽样调查的意义以及样本容量的意义.11、A【解析】

直接利用二次根式的性质化简得出答案.【详解】解:,故选:A.【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.12、C【解析】

根据二次根式的运算法则进行分析.【详解】A.,不是同类二次根式,不能合并,本选项错误;B.,本选项错误;C.,本选项正确;D.,本选项错误.故选C【点睛】本题考核知识点:二次根式运算.解题关键点:理解二次根式运算法则.二、填空题(每题4分,共24分)13、∠B=90°.【解析】

根据旋转的性质得AB=CD,∠BAC=∠DCA,则AB∥CD,得到四边形ABCD为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.【详解】∵△ABC绕AC的中点O顺时针旋转180°得到△CDA,∴AB=CD,∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD为平行四边形,当∠B=90°时,平行四边形ABCD为矩形,∴添加的条件为∠B=90°.故答案为∠B=90°.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的判定.14、m.【解析】

首先解不等式,利用m表示出两个不等式的解集,根据不等式组有解即可得到关于m的不等式,从而求解.【详解】,解①得:x<2m,解②得:x>2﹣m,根据题意得:2m>2﹣m,解得:m.故答案为:m.【点睛】本题考查了解不等式组,解决本题的关键是熟记确定不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15、【解析】分析:直接根据“上加下减”的原则进行解答即可.详解:由“上加下减”的原则可知,直线y=-2x﹣2向上平移5个单位,所得直线解析式是:y=-2x﹣2+5,即y=-2x+1.故答案为:y=-2x+1.点睛:本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.16、75°【解析】

根据三角形内角和定理求出∠DMC,求出∠AMF,根据三角形外角性质得出∠1=∠A+∠AMF,代入求出即可.【详解】∵∠ACB=90°,

∴∠MCD=90°,

∵∠D=60°,

∴∠DMC=30°,

∴∠AMF=∠DMC=30°,

∵∠A=45°,

∴∠1=∠A+∠AMF=45°+30°=75°,

故选:C.【点睛】本题考查了三角形内角和定理,三角形的外角性质的应用,解此题的关键是求出∠AMF的度数.17、x=1,y=1【解析】

由图可知:两个一次函数的交点坐标为(1,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】解:函数y=ax+b和y=kx的图象交于点P(1,1)即x=1,y=1同时满足两个一次函数的解析式.所以,方程组的解是,故答案为x=1,y=1.【点睛】本题考查了一次函数与二元一次方程组的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.18、110°【解析】已知∠1=20°,可求得∠3=90°-20°=70°,再由矩形的对边平行,根据两直线平行,同旁内角互补可得∠2+∠3=180°,即可得∠2=110°.三、解答题(共78分)19、(2)证明见解析;(2)四边形EBFD是矩形.理由见解析.【解析】分析:(1)根据SAS即可证明;(2)首先证明四边形EBFD是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△DEO和△BOF中,,∴△DOE≌△BOF.(2)结论:四边形EBFD是矩形.理由:∵OD=OB,OE=OF,∴四边形EBFD是平行四边形,∵BD=EF,∴四边形EBFD是矩形.点睛:本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20、(1)AE=EF;(2)AE=EF成立,理由见解析.【解析】

(1)取AB的中点M,连接EM,根据同角的余角相等得到∠BAE=∠CEF,然后易证ΔMAE≅ΔCEF,问题得解;(2)在AB上取点P,使AP=CE,连接EP,同(1)的方法相同,证明ΔPAE≅ΔCEF即可;【详解】(1)证明:如图1,取AB的中点M,连接EM,∵四边形ABCD是正方形,∴AB=BC,∠B=∠BCD=90°,∵AM=EC,∴BM=BE,∴∠BME=45°,∠AME=135°,∵CF是正方形外角的平分线,∴∠ECF=135°,∵∠AEF=90°,∠B=90°,∴∠BAE=∠CEF,在ΔMAE和ΔCEF中,∠AME=∠ECFAM=CE∴ΔMAE≅ΔCEF,∴AE=EF;(2)如图2,在AB上取点P,使AP=CE,连接EP,∵四边形ABCD是正方形,∴AB=BC,∠B=∠BCD=90°,∵AP=EC,∴BP=BE,∴∠BPE=45°,∠APE=135°,∵CF是正方形外角的平分线,∴∠ECF=135°,∵∠AEF=90°,∠B=90°,∴∠BAE=∠CEF,在ΔPAE和ΔCEF中,∠PAE=∠CEFAP=EC∴ΔPAE≅ΔCEF,∴AE=EF;【点睛】此题是四边形综合题,主要考查的是正方形的性质、全等三角形的判定和性质,正确作出辅助线、灵活运用全等三角形的判定定理和性质定理是解题的关键,解答时,注意类比思想的正确运用.21、(1);;(2)图详见解析;(3)3【解析】

(1)把代入即可求得的值,求得正比例函数的解析式;把,代入,利用待定系数法,即可求得一次函数的解析式;(2)根据题意描出相应的点,再连线即可;(3)由A、B、O三点坐标,根据三角形的面积公式即可求解.【详解】解:(1)把A(1,2)代入中,得,∴正比例函数的表达式为;把A(1,2),B(3,0)代入中,得,解得:,所以一次函数的表达式为;(2)如图所示.(3)由题意可得:.【点睛】本题考查了待定系数法求函数解析式,以及直线与坐标轴围成的三角形的面积的计算,理解线段的长度可以通过点的坐标表示,培养数形结合思想是关键.22、(1)△ABC的面积为,AC=;(2)四边形EFGH的面积为.【解析】

(1)首先过点A作AK⊥BC于K,由每一个小三角形都是边长为1个单位长度的正三角形,可求得每一个小正三角形的高为,进一步可求得△ABC的面积,然后由勾股定理可求得对角线AC的长;(2)过点E作EP⊥FH于P,则四边形EFGH的面积=2S△EFH=2××EP×FH=EP×FH,再代入数据计算即可得出结果.【详解】解:(1)如图③,过点A作AK⊥BC于K,∵每一个小三角形都是边长为1个单位长度的正三角形,∴每一个小正三角形的高为,∴.∴△ABC的面积=;∵BK=,∴.∴.(2)如图④,过点E作EP⊥FH于P,则EP=,由题意可得四边形EFGH的面积=2S△EFH=2××EP×FH=EP×FH=.【点睛】此题考查了平行四边形的性质、勾股定理和等边三角形的性质,解题的关键正确理解题意,作出所需辅助线,注意数形结合去思考分析,熟知等边三角形的性质和有关计算.23、(1),,;(2)见解析【解析】

(1)利用勾股定理即可写出答案;(2)连接、交于点,根据矩形的性质能证明O是AC、BD的中点,在和中利用阿波罗尼奥斯定理可以证明结论.【详解】(1)在中,在中,∴故答案是:;;;(2)证明:连接、交于点,连接∵四边形为矩形,∴OA=OC,OB=OD,AC=BD,由阿波罗尼奥斯定理得.【点睛】本题考查了矩形的性质及勾股定理的运用,能充分理解题意并运用性质定理推理论证是解题的关键.24、(1)见解析;(2)MN=310【解析】

(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为6且E为OM的中点知OH=HA=3、HM=6,再根据勾股定理得OM=35,由勾股定理即可求出MN【详解】(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为6,∴OH=HA=3,∵E为OM的中点,∴HM=6,则OM=32∴MN=OM【点睛】本题主要考查正方形的性质,解题的关键是掌握正方形的四条边都相等,正方形的每条对角线平分一组对角及全等三角形的判定与性质.25、(1)身高h与指距d之间的函数关系式为h=9d-20;(2)一般情况下他的指距应是1cm【解析】

(1)根据题意设h与d之间的函数关系式为:h=kd+b,从表格中取两组数据,利用待定系数法,求得函数关系式即可;(2)把h=196代入函数解析式即可求得.【详解】解:(1)设h与d之间的函数关系式为:h=kd+b.把d=20,h=160;d=21,h=169,分别代入得,解得,∴h=9d-2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论