版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题04五大类概率与统计题型-2024年高考数学大题秒杀技巧及专项训练(原卷版)【题型1独立性检验问题】【题型2线性回归及非线性回归问题】【题型3超几何分布问题】【题型4二项分布问题】【题型5正态分布问题】独立性检验问题分层抽样一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样。分层抽样适用于已知总体是由差异明显的几部分组成的。注:①求某层应抽个体数量:按该层所占总体的比例计算.②已知某层个体数量,求总体容量或反之求解:根据分层抽样就是按比例抽样,列比例式进行计算.③分层抽样的计算应根据抽样比构造方程求解,其中“抽样比=eq\f(样本容量,总体容量)=eq\f(各层样本数量,各层个体数量)”频率分布直方图(1)频率、频数、样本容量的计算方法①eq\f(频率,组距)×组距=频率.②eq\f(频数,样本容量)=频率,eq\f(频数,频率)=样本容量,样本容量×频率=频数.③频率分布直方图中各个小方形的面积总和等于.频率分布直方图中数字特征的计算(1)最高的小长方形底边中点的横坐标即是众数.(2)中位数左边和右边的小长方形的面积和是相等的.设中位数为,利用左(右)侧矩形面积之和等于,即可求出.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和,即有,其中为每个小长方形底边的中点,为每个小长方形的面积.独立性检验(1)定义:利用独立性假设、随机变量来确定是否有一定把握认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验.(2)公式:,其中为样本容量.(3)独立性检验的具体步骤如下:①计算随机变量的观测值,查下表确定临界值:0.50.400.250.150.100.050.0250.0100.0050.0010.4550.7081.3232.0722.7063.8415.0246.6357.87910.828②如果,就推断“与有关系”,这种推断犯错误的概率不超过;否则,就认为在犯错误的概率不超过的前提下不能推断“与有关系”.注意:算出的k2在那个区间内,从而求出k0在那个区间4月15日是全民国家安全教育日.以人民安全为宗旨也是“总体国家安全观”的核心价值.只有人人参与,人人负责,国家安全才能真正获得巨大的人民性基础,作为知识群体的青年学生,是强国富民的中坚力量,他们的国家安全意识取向对国家安全尤为重要.某校社团随机抽取了600名学生,发放调查问卷600份(答卷卷面满分100分).回收有效答卷560份,其中男生答卷240份,女生答卷320份.有效答卷中75分及以上的男生答卷80份,女生答卷80份,其余答卷得分都在10分至74分之间.同时根据560份有效答卷的分数,绘制了如图所示的频率分布直方图.(1)求频率分布直方图中m的值,并求出这560份有效答卷得分的中位数和平均数n(同一组数据用该组中点值代替).(2)如果把75分及以上称为对国家安全知识高敏感人群,74分及以下称为低敏感人群,请根据上述数据,完成下面2×2列联表,并判断能否有的把握认为学生性别与国家安全知识敏感度有关.高敏感低敏感总计男生80女生80总计560附:独立性检验临界值表0.10.050.010.0050.0012.7063.8416.6357.87910.828公式:,其中.某市阅读研究小组为了解该城市中学生阅读与语文成绩的关系,在参加市中学生语文综合能力竞赛的各校学生中随机抽取了500人进行调查,并按学生成绩是否高于75分(满分100分)及周平均阅读时间是否少于10小时,将调查结果整理成列联表.现统计出成绩不低于75分的样本占样本总数的,周平均阅读时间少于10小时的人数占样本总数的一半,而不低于75分且周平均阅读时间不少于10小时的样本有100人.周平均阅读时间少于10小时周平均阅读时间不少于10小时合计75分以下不低于75分100合计500(1)根据所给数据,求出表格中和的值,并分析能否有以上的把握认为语文成绩与阅读时间是否有关;(2)先从成绩不低于75分的样本中按周平均阅读时间是否少于10小时分层抽样抽取9人进一步做问卷调查,然后从这9人中再随机抽取3人进行访谈,记抽取3人中周平均阅读时间不少于10小时的人数为,求的分布列与均值.参考公式及数据:.0.010.0050.0016.6357.87910.8281.某校在课外活动期间设置了文化艺术类活动和体育锻炼类活动,为了解学生对这两类活动的参与情况,统计了如下数据:文化艺术类体育锻炼类合计男女合计(1)通过计算判断,有没有的把握认为该校学生所选择课外活动的类别与性别有关系?(2)为收集学生对课外活动建议,在参加文化艺术类活动的学生中按性别用分层抽样的方法抽取了名同学.若在这名同学中随机抽取名,求所抽取的名同学中至少有名女生的概率.附表及公式:其中,.2.软笔书法又称中国书法,是我国的国粹之一,琴棋书画中的“书”指的正是书法.作为我国的独有艺术,软笔书法不仅能够陶冶情操,培养孩子对艺术的审美还能开发孩子的智力,拓展孩子的思维与手的灵活性,对孩子的身心健康发展起着重要的作用.近年来越来越多的家长开始注重孩子的书法教育.某书法培训机构统计了该机构学习软笔书法的学生人数(每人只学习一种书体),得到相关数据统计表如下:书体楷书行书草书隶书篆书人数2416102010(1)该培训机构统计了某周学生软笔书法作业完成情况,得到下表,其中.认真完成不认真完成总计男生女生总计60若根据小概率值的独立性检验可以认为该周学生是否认真完成作业与性别有关,求该培训机构学习软笔书法的女生的人数.(2)现从学习楷书与行书的学生中用分层随机抽样的方法抽取10人,再从这10人中随机抽取4人,记4人中学习行书的人数为,求的分布列及数学期望.参考公式及数据:.0.100.050.012.7063.8416.6353.甲、乙两医院到某医科大学实施“小小医生计划”,即通过对毕业生进行笔试,面试,模拟诊断这3项程序后直接签约一批毕业生,已知3项程序分别由3个部门独立依次考核,且互不影响,当3项程序全部通过即可签约.假设该校口腔医学系170名毕业生参加甲医院的“小小医生计划”的具体情况如下表(不存在通过3项程序考核后放弃签约的现象).性别参加考核但未能签约的人数参加考核并能签约的人数合计男生582785女生424385合计10070170(1)判断是否有的把握认为这170名毕业生参加甲医院的“小小医生计划”能否签约与性别有关;(2)该校口腔医学系准备从专业成绩排名前5名的毕业生中随机挑选2人去参加乙医院的考核,求专业排名第一的小华同学被选中的概率.参考公式与临界值表:,.0.1000.0500.0250.0102.7063.8415.0246.6354.某大学保卫处随机抽取该校1000名大学生对该校学生进出校园管理制度的态度进行了问卷调查,结果见下表:男生(单位:人)女生(单位:人)总计赞成400300700不赞成100200300总计5005001000(1)根据小概率值的独立性检验,分析该校大学生赞成学生进出校园管理制度与学生的性别是否有关;(2)为答谢参与问卷调查的同学,参与本次问卷调查的同学每人可以抽一次奖,获奖结果及概率如下:奖金(单位:元)01020获奖概率若甲、乙两名同学准备参加抽奖,他们的获奖结果相互独立,记两人获得奖金的总金额为(单位:元),求的数学期望.附:,其中.0.150.100.050.0100.0012.0722.7063.8416.63510.8285.民航招飞是指普通高校飞行技术专业(本科)通过高考招收飞行学员,据统计某校高三在校学生有1000人,其中男学生600人,女学生400人,男女各有100名学生有报名意向.(1)完成给出的列联表,并分别估计男、女学生有报名意向的概率;有报名意向没有报名意向合计男学生女学生合计(2)判断是否有的把握认为该校高三学生是否有报名意向与性别有关.附:,其中:,0.100.050.0250.0100.0012.7063.8415.0246.63510.8286.“村超”是贵州省榕江县举办的“和美乡村足球超级联赛”的简称.在2023年火爆“出圈”后,“村超”热度不减.2024年1月6日,万众瞩目的2024年“村超”新赛季在“村味”十足的热闹中拉开帷幕,一场由乡村足球发起的“乐子”正转化为乡村振兴的“路子”.为了解不同年龄的游客对“村超”的满意度,某组织进行了一次抽样调查,分别抽取年龄超过35周岁和年龄不超过35周岁各200人作为样本,每位参与调查的游客都对“村超”给出满意或不满意的评价.设事件“游客对“村超”满意”,事件“游客年龄不超过35周岁”,据统计,,.(1)根据已知条件,填写下列列联表并说明理由;年龄满意度合计满意不满意年龄不超过35周岁年龄超过35周岁合计(2)由(1)中列联表数据,依据小概率值的独立性检验,能否认为游客对“村超”的满意度与年龄有关联?附:.0.10.050.010.0050.0012.7063.8416.6357.87910.8287.某校在课外活动期间设置了文化艺术类活动和体育锻炼类活动,为了解学生对这两类活动的参与情况,统计了如下数据:文化艺术类体育锻炼类合计男100300400女50100150合计150400550(1)通过计算判断,有没有90%的把握认为该校学生所选择课外活动的类别与性别有关系?(2)“投壶”是中国古代宴饮时做的一种投掷游戏,也是一种礼仪.该校文化艺术类课外活动中,设置了一项“投壶”活动.已知甲、乙两人参加投壶活动,投中1只得1分,未投中不得分,据以往数据,甲每只投中的概率为,乙每只投中的概率为,若甲、乙两人各投2只,记两人所得分数之和为,求的分布列和数学期望.
附表及公式:0.150.100.050.0250.0102.0722.7063.8415.0246.635其中,.8.随着科学技术飞速发展,科技创新型人才需求量增大,在2015年,国家开始大力推行科技特长生招生扶持政策,教育部也出台了《关于“十三五”期间全面深入推进教育信息化工作的指导意见(征求意见稿)》为选拔和培养科技创新型人才做好准备.某调研机构调查了两个参加国内学科竞赛的中学,从两个中学的参赛学员中随机抽取了60人统计其参赛获奖情况,并将结果整理如下:未获得区前三名及以上名次获得区前三名及以上名次中学116中学349(1)试判断是否有的把握认为获得区前三名及以上名次与所在的学校有关?(2)用分层抽样的方法,从样本中获得区前三名及以上名次的学生中抽取5人,再从这5人中任选3人进行深度调研,求所选的3人中恰有2人来自中学的概率.附:,其中.0.100.050.0250.0102.7063.8415.0246.635线性回归及非线性回归问题线性回归线性回归是研究不具备确定的函数关系的两个变量之间的关系(相关关系)的方法.对于一组具有线性相关关系的数据(x1,y1),(x2,y2),…,(xn,yn),其回归方程的求法为其中,,,(,)称为样本点的中心.非线性回归建立非线性回归模型的基本步骤(1)确定研究对象,明确哪个是解释变量,哪个是预报变量;(2)画出确定好的解释变量和预报变量的散点图,观察它们之间的关系(是否存在非线性关系);(3)由经验确定非线性回归方程的类型(如我们观察到数据呈非线性关系,一般选用反比例函数、二次函数、指数函数、对数函数、幂函数模型等);(4)通过换元,将非线性回归方程模型转化为线性回归方程模型;(5)按照公式计算线性回归方程中的参数(如最小二乘法),得到线性回归方程;(6)消去新元,得到非线性回归方程;(7)得出结果后分析残差图是否有异常.若存在异常,则检查数据是否有误,或模型是否合适等.2023年,国家不断加大对科技创新的支持力度,极大鼓舞了企业投入研发的信心,增强了企业的创新动能.某企业在国家一系列优惠政策的大力扶持下,通过技术革新和能力提升,极大提升了企业的影响力和市场知名度,订单数量节节攀升,右表为该企业今年1~4月份接到的订单数量.月份t1234订单数量y(万件)5.25.35.75.8附:相关系数,回归方程中斜率和截距的最小二乘法估计公式分别为,,.(1)试根据样本相关系数r的值判断订单数量y与月份t的线性相关性强弱(,则认为y与t的线性相关性较强,,则认为y与t的线性相关性较弱).(结果保留两位小数)(2)建立y关于t的线性回归方程,并预测该企业5月份接到的订单数量.数据显示中国车载音乐已步入快速发展期,随着车载音乐的商业化模式进一步完善,市场将持续扩大,下表为2018—2022年中国车载音乐市场规模(单位:十亿元),其中年份2018—2022对应的代码分别为1—5.年份代码x12345车载音乐市场规模y2.83.97.312.017.0(1)由上表数据知,可用指数函数模型拟合y与x的关系,请建立y关于x的回归方程(a,b的值精确到0.1);(2)综合考虑2023年及2024年的经济环境及疫情等因素,某预测公司根据上述数据求得y关于x的回归方程后,通过修正,把b-1.3作为2023年与2024年这两年的年平均增长率,请根据2022年中国车载音乐市场规模及修正后的年平均增长率预测2024年的中国车载音乐市场规模.参考数据:1.9433.821.71.6其中,.参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘法估计公式分别为.某新能源汽车公司对其产品研发投资额x(单位:百万元)与其月销售量y(单位:千辆)的数据进行统计,得到如下统计表和散点图.x12345y0.691.611.792.082.20(1)通过分析散点图的特征后,计划用作为月销售量y关于产品研发投资额x的回归分析模型,根据统计表和参考数据,求出y关于x的回归方程;(2)公司决策层预测当投资额为11百万元时,决定停止产品研发,转为投资产品促销.根据以往的经验,当投资11百万元进行产品促销后,月销售量的分布列为:345Pp结合回归方程和的分布列,试问公司的决策是否合理.参考公式及参考数据:,,.y0.691.611.792.082.20(保留整数)256891.某企业拟对某产品进行科技升级,根据市场调研与模拟,得到科技升级投入(万元)与科技升级直接收益(万元)的数据统计如下:序号123456723468101313223142505658根据表格中的数据,建立了与的两个回归模型:模型①:模型②:.(1)根据下列表格中的数据,比较模型①、②的相关指数的大小,并选择拟合精度更高、更可靠的模型;(2)根据(1)选择的模型,预测对该产品科技升级的投入为100万元时的直接收益.回归模型模型①模型②回归方程182.479.2(附:刻画回归效果的相关指数越大,模型的拟合效果越好)2.某企业为响应国家号召,汇聚科研力量,加强科技创新,准备加大研发资金投入,为了解年研发资金投入额(单位:亿元)对年盈利额(单位:亿元)的影响,通过对“十二五”和“十三五”规划发展10年期间年研发资金投入额和年盈利额数据进行分析,建立了两个函数模型:;,其中、、、均为常数,为自然对数的底数,令,,经计算得如下数据:(1)请从相关系数的角度,分析哪一个模型拟合度更好?(2)根据(1)的选择及表中数据,建立关于的回归方程.(系数精确到0.01)附:相关系数回归直线中:,.3.一座城市的夜间经济不仅有助于拉动本地居民内需,还能延长外地游客、商务办公者等的留存时间,带动当地经济发展,是衡量一座城市生活质量、消费水平、投资环境及文化发展活力的重要指标.数据显示,近年来中国各地政府对夜间经济的扶持力度加大,夜间经济的市场发展规模保持稳定增长,下表为2017—2022年中国夜间经济的市场发展规模(单位:万亿元),设2017—2022年对应的年份代码依次为1~6.年份代码x123456中国夜间经济的市场发展规模y/万亿元20.522.926.430.936.442.4(1)已知可用函数模型拟合y与x的关系,请建立y关于x的回归方程(a,b的值精确到0.01);(2)某传媒公司发布的2023年中国夜间经济城市发展指数排行榜前10名中,吸引力超过90分的有4个,从这10个城市中随机抽取5个,记吸引力超过90分的城市数量为X,求X的分布列与数学期望.参考数据:3.36673.28217.251.16其中.参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘法估计分别为,.4.当前,人工智能技术以前所未有的速度迅猛发展,并逐步影响我们的方方面面,人工智能被认为是推动未来社会发展和解决人类面临的全球性问题的重要手段.某公司在这个领域逐年加大投入,以下是近年来该公司对产品研发年投入额(单位:百万元)与其年销售量y(单位:千件)的数据统计表.12345611.53612(1)公司拟分别用①和②两种方案作为年销售量关于年投入额的回归分析模型,请根据已知数据,确定方案①和②的经验回归方程;(计算过程保留到小数点后两位,最后结果保留到小数点后一位)(2)根据下表数据,用决定系数(只需比较出大小)比较两种模型的拟合效果哪种更好,并选择拟合精度更高的模型,预测年投入额为百万元时,产品的销售量是多少?经验回归方程残差平方和参考公式及数据:,,,,,,,,.5.碳排放是引起全球气候变暖问题的主要原因.2009年世界气候大会,中国做出了减少碳排放的承诺,2010年被誉为了中国低碳创业元年.2020年中国政府在联合国大会发言提出:中国二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.碳中和是指主体在一定时间内产生的二氧化碳或温室气体排放总量,通过植树造林、节能减排等形式,以抵消自身产生的二氧化碳或温室气体排放量,实现正负抵消,达到相对“零排放”.如图为本世纪来,某省的碳排放总量的年度数据散点图.该数据分为两段,2010年前该省致力于经济发展,没有有效控制碳排放;从2010年开始,该省通过各种举措有效控制了碳排放.用x表示年份代号,记2010年为.用h表示2010年前的的年度碳排放量,y表示2010年开始的年度碳排放量.表一:2011~2017年某省碳排放总量年度统计表(单位:亿吨)年份2011201220132014201520162017年份代号x1234567年度碳排放量y(单位:亿吨)2.542.6352.722.802.8853.003.09(1)若关于x的线性回归方程为,根据回归方程估计若未采取措施,2017年的碳排放量;并结合表一数据,说明该省在控制碳排放举措下,减少排碳多少亿吨?(2)根据,设2011~2017年间各年碳排放减少量为,建立z关于x的回归方程.①根据,求表一中y关于x的回归方程(精确到0.001);②根据①所求的回归方程确定该省大约在哪年实现碳达峰?参考数据:.参考公式:.6.近三年的新冠肺炎疫情对我们的生活产生了很大的影响,当然也影响着我们的旅游习惯,乡村游、近郊游、周边游热闹了许多,甚至出现“微度假”的概念.在国家有条不紊的防疫政策下,旅游又重新回到了老百姓的日常生活中.某乡村抓住机遇,依托良好的生态环境、厚重的民族文化,开展乡村旅游.通过文旅度假项目考察,该村推出了多款套票文旅产品,得到消费者的积极回应.该村推出了六条乡村旅游经典线路,对应六款不同价位的旅游套票,相应的价格x与购买人数y的数据如下表.旅游线路奇山秀水游古村落游慢生活游亲子游采摘游舌尖之旅套票型号ABCDEF价格x/元394958677786经数据分析、描点绘图,发现价格x与购买人数y近似满足关系式,即,对上述数据进行初步处理,其中,,,2,…,6.附:①可能用到的数据:,,,.②对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计值分别为,.(1)根据所给数据,求关于x的回归方程.(2)按照相关部门的指标测定,当套票价格时,该套票受消费者的欢迎程度更高,可以被认定为“热门套票”.现有三位游客,每人从以上六款套票中购买一款旅游,购买任意一款的可能性相等.若三人买的套票各不相同,记三人中购买“热门套票”的人数为X,求随机变量X的分布列和期望.7.数独是源自18世纪瑞士的一种数学游戏,玩家需要根据9×9盘面上的已知数字,推理出所有剩余空格的数字,并满足每一行、每一列、每一个粗线宫(3×3)内的数字均含1~9,且不重复.数独爱好者小明打算报名参加“丝路杯”全国数独大赛初级组的比赛.参考数据:17500.370.55参考公式:对于一组数据,其经验回归方程的斜率和截距的最小二乘估计分别为,.(1)赛前小明进行了一段时间的训练,每天解题的平均速度y(秒/题)与训练天数x(天)有关,经统计得到如下数据:x(天)1234567y(秒/题)910800600440300240210现用作为回归方程模型,请利用表中数据,求出该回归方程;(,用分数表示)(2)小明和小红玩“对战赛”,每局两人同时开始解一道数独题,先解出题的人获胜,不存在平局,两人约定先胜3局者赢得比赛.若小明每局获胜的概率为,且各局之间相互独立,设比赛X局后结束,求随机变量X的分布列及均值.8.为了加快实现我国高水平科技自立自强,某科技公司逐年加大高科技研发投入.下图1是该公司2013年至2022年的年份代码x和年研发投入y(单位:亿元)的散点图,其中年份代码1∼10分别对应年份2013∼2022.
根据散点图,分别用模型①,②作为年研发投入y(单位:亿元)关于年份代码x的经验回归方程模型,并进行残差分析,得到图2所示的残差图.结合数据,计算得到如下表所示的一些统计量的值:752.2582.54.512028.35表中,.(1)根据残差图,判断模型①和模型②哪一个更适宜作为年研发投入y(单位:亿元)关于年份代码x的经验回归方程模型?并说明理由;(2)(i)根据(1)中所选模型,求出y关于x的经验回归方程;(ii)设该科技公司的年利润(单位:亿元)和年研发投入y(单位:亿元)满足(且),问该科技公司哪一年的年利润最大?附:对于一组数据,,…,,其经验回归直线的斜率和截距的最小二乘估计分别为,.超几何分布问题超几何分布(1)在含有件次品的件产品中,任取件,其中恰有件次品,则事件发生的概率为,,1,2,…,,其中,且,,,,,称分布列为超几何分布列.如果随机变量的分布列为超几何分布列,则称随机变量服从超几何分布.01……超几何分布和二项分布的区别区别1:超几何分布需要知道总体的容量,而二项分布不需要;区别2:超几何分布是“不放回”抽取,在每次试验中某一事件发生的概率是不相同的;而二项分布是“有放回”抽取(独立重复),在每次试验中某一事件发生的概率是相同的.乡村民宿立足农村,契合了现代人远离喧嚣、亲近自然、寻味乡愁的美好追求.某镇在旅游旺季前夕,为了解各乡村的普通型民宿和品质型民宿的品质,随机抽取了8家规模较大的乡村民宿,统计得到各家的房间数如下表:民宿点甲乙丙丁戊己庚辛普通型民宿16812141318920品质型民宿6164101110912(1)从这8家中随机抽取3家,在抽取的这3家的普通型民宿的房间均不低于10间的条件下,求这3家的品质型民宿的房间均不低于10间的概率;(2)从这8家中随机抽取4家,记X为抽取的这4家中普通型民宿的房间不低于15间的家数,求X的分布列和数学期望.已知某排球特色学校的校排球队来自高一、高二、高三三个年级的学生人数分别为7人、6人、2人.(1)若从该校队随机抽取3人拍宣传海报,求抽取的3人中恰有1人来自高三年级的概率.(2)现该校的排球教练对“发球、垫球、扣球”这3个动作技术进行训练,且在训练阶段进行了多轮测试,规定:在一轮测试中,这3个动作至少有2个动作达到“优秀”,则该轮测试记为“优秀”.已知在某一轮测试的3个动作中,甲同学每个动作达到“优秀”的概率均为,乙同学每个动作达到“优秀”的概率均为,且每位同学的每个动作互不影响,甲、乙两人的测试结果互不影响.记X为甲、乙二人在该轮测试结果为“优秀”的人数,求X的分布列和数学期望.2023年是全面贯彻落实党二十大精神的开局之年,也是实施“十四五”规划承上启下的关键之年,今年春季以来,各地出台了促进经济发展的各种措施,经济增长呈现稳中有进的可喜现象.服务业的消费越来越火爆,绍兴一些超市也纷纷加大了广告促销.现随机抽取7家超市,得到其广告支出x(单位:万元)与销售额y(单位:万元)数据如下:超市ABCDEFG广告支出1246101320销售额19324440525354(1)建立关于的一元线性回归方程(系数精确到0.01);(2)若将超市的销售额与广告支出的比值称为该超市的广告效率值,当时,称该超市的广告为“好广告”.从这7家超市中随机抽取4家超市,记这4家超市中“好广告”的超市数为,求的分布列与期望.附注:参考数据,回归方程中斜率和截距的最小二乘估计公式分别为:.1.当AIGC(生成式人工智能)领域的一系列创新性技术有了革命性突破,全球各大科技企业积极拥抱AIGC,我国有包括A在内的5家企业加码布局AIGC生成算法赛道,有包括B、C在内的5家企业加码布局AIGC的自然语言处理赛道,某传媒公司准备发布(2023年中国AIGC发展研究报告),先期准备从上面的10家企业中随机选取4家进行采访.(1)若在布局不同的赛道中各选取2家企业,求选取的4家企业中,企业A,B,C至少有2家的概率.(2)记选取的4家科技企业中布局AIGC的是生成算法赛道的企业个数为X,求X的分布列与期望.2.某校高三年级名学生的高考适应性演练数学成绩频率分布直方图如图所示,其中成绩分组区间是、、、、、.(1)求图中的值,并根据频率分布直方图,估计这名学生的这次考试数学成绩的第百分位数;(2)从这次数学成绩位于、的学生中采用比例分配的分层随机抽样的方法抽取人,再从这人中随机抽取人,该人中成绩在区间的人数记为,求的分布列及数学期望.3.水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:等级标准果优质果精品果礼品果个数个10254025(1)若将频率视为概率,从这100个水果中有放回地随机抽取4个,求恰好有2个水果是礼品果的概率;(2)用分层抽样的方法从这100个水果中抽取20个,再从抽取的20个水果中随机地抽取2个,用表示抽取的是精品果的数量,求的分布列及数学期望.4.某公司为了解市场对其开发的新产品的需求情况,共调查了250名顾客,采取100分制对产品功能满意程度、产品外观满意程度分别进行评分,其中对产品功能满意程度的评分服从正态分布,对产品外观满意程度评分的频率分布直方图如图所示,规定评分90分以上(不含90分)视为非常满意.
(1)本次调查对产品功能非常满意和对产品外观非常满意的各有多少人?(结果四舍五入取整数)(2)若这250人中对两项都非常满意的有2人,现从对产品功能非常满意和对产品外观非常满意的人中随机抽取3人,设3人中两项都非常满意的有X人,求X的分布列和数学期望.(附:若,则,)5.吕梁市举办中式厨师技能大赛,大赛分初赛和决赛,初赛共进行3轮比赛,每轮比赛结果互不影响.比赛规则如下:每一轮比赛,参赛选手要在规定的时间和范围内,制作中式面点和中式热菜各2道,若有不少于3道得到评委认可,将获得一张通关卡,3轮比赛中,至少获得2张通关卡的选手将进入决赛.为能进入决赛,小李赛前在师傅的指导下多次进行训练,师傅从小李训练中所做的菜品中随机抽取了中式面点和中式热菜各4道,其中有3道中式面点和2道中式热菜得到认可.(1)若从小李训练中所抽取的8道菜品中,随机抽取中式面点、中式热菜各2道,由此来估计小李在一轮比赛中的通关情况,试预测小李在一轮比赛中通关的概率;(2)若以小李训练中所抽取的8道菜品中两类菜品各自被师傅认可的频率作为该类菜品被评委认可的概率,经师傅对小李进行强化训练后,每道中式面点被评委认可的概率不变,每道中式热菜被评委认可的概率增加了,以获得通关卡次数的期望作为判断依据,试预测小李能否进入决赛?6.某校举行知识竞赛,最后一个名额要在A,B两名同学中产生,测试方案如下:A,B两名学生各自从给定的4个问题中随机抽取3个问题作答,在这4个问题中,已知A能正确作答其中的3个,B能正确作答每个问题的概率都是,A,B两名同学作答问题相互独立.(1)求A,B两名同学恰好共答对2个问题的概率;(2)若让你投票决定参赛选手,你会选择哪名学生,简要说明理由.7.一袋中有个均匀硬币,其中有个普通硬币,普通硬币的一面为面值,另一面为花朵图案,如下图,其余个硬币的两面均为面值.每次试验从袋中随机摸出两个硬币各掷一次,用事件表示“两个硬币均是面值朝上”,用事件表示“两个硬币均是花朵图案朝上”,又把两个硬币放回袋中,如此重复次试验.
(1)若,①求次试验中摸出普通硬币个数的分布列;②求次试验中事件发生的次数的期望;(2)设次试验中事件恰好发生次的概率为,当取何值时,最大?8.2023年9月26日,第十四届中国(合肥)国际园林博览会在合肥骆岗公园开幕.本届园博会以“生态优先,百姓园博”为主题,共设有5个省内展园、26个省外展园和7个国际展园,开园面积近3.23平方公里.游客可通过乘坐观光车、骑自行车和步行三种方式游园.(1)若游客甲计划在5个省内展园和7个国际展园中随机选择2个展园游玩,记甲参观省内展园的数量为,求的分布列及数学期望;(2)为更好地服务游客,主办方随机调查了500名首次游园且只选择一种游园方式的游客,其选择的游园方式和游园结果的统计数据如下表:游园方式游园结果观光车自行车步行参观完所有展园808040未参观完所有展园20120160用频率估计概率.若游客乙首次游园,选择上述三种游园方式的一种,求游园结束时乙能参观完所有展园的概率.二项分布问题二项分布(1)一般地,在次独立重复试验中,用表示事件发生的次数,设每次试验中事件发生的概率为,不发生的概率,那么事件恰好发生次的概率是(,,,…,)于是得到的分布列…………由于表中第二行恰好是二项式展开式各对应项的值,称这样的离散型随机变量服从参数为,的二项分布,记作,并称为成功概率.注:①各次试验中的事件是相互独立的;②每次试验只有两种结果:事件要么发生,要么不发生;③随机变量是这次独立重复试验中事件发生的次数.④二项分布是放回抽样问题,在每次试验中某一事件发生的概率是相同的.若,则,.为进一步加强学生的文明养成教育,推进校园文化建设,倡导真善美,用先进人物的先进事迹来感动师生,用身边的榜样去打动师生,用真情去发现美,分享美,弘扬美,某校以争做最美青年为主题,进行“最美青年”评选活动,最终评出了10位“最美青年”,其中6名女生4名男生。学校准备从这10位“最美青年”中每次随机选出一人做事迹报告.(1)若每位“最美青年”最多做一次事迹报告,记第一次抽到女生为事件A,第二次抽到男生为事件B,求,;(2)根据不同需求,现需要从这10位“最美青年”中每次选1人,可以重复,连续4天分别为高一、高二、高三学生和全体教师做4场事迹报告,记这4场事迹报告中做报告的男生人数为X,求X的分布列和数学期望.某大型商场为了回馈广大顾客,设计了一个抽奖活动,在抽奖箱中放8个大小相同的小球,其中4个为红色,4个为黑色.抽奖方式为:每名顾客进行两次抽奖,每次抽奖从抽奖箱中一次性摸出两个小球.如果每次抽奖摸出的两个小球颜色相同即为中奖,两个小球颜色不同即为不中奖.(1)若规定第一次抽奖后将球放回抽奖箱,再进行第二次抽奖,求中奖次数的分布列和数学期望.(2)若规定第一次抽奖后不将球放回抽奖箱,直接进行第二次抽奖,求中奖次数的分布列和数学期望.(3)如果你是商场老板,如何在上述问两种抽奖方式中进行选择?请写出你的选择及简要理由.某公司对新生产出来的300辆新能源汽车进行质量检测,每辆汽车要由甲、乙、丙三名质检员各进行一次质量检测,三名质检员中有两名或两名以上检测不合格的将被列为不合格汽车,有且只有一名质检员检测不合格的汽车需要重新由甲、乙两人各进行一次质量检测,重新检测后,如果甲、乙两名质检员中还有一人或两人检测不合格,也会被列为不合格汽车.假设甲、乙、丙三名质检员的检测相互独立,每一次检测不合格的概率为.(1)求每辆汽车被列为不合格汽车的概率;(2)公司对本次质量检测的预算支出是4万元,每辆汽车不需要重新检测的费用为60元,需要重新检测的前后两轮检测的总费用为100元,所有汽车除检测费用外,其他费用估算为1万元,若300辆汽车全部参与质量检测,实际费用是否会超出预算?1.某校开展科普知识团队接力闯关活动,该活动共有两关,每个团队由位成员组成,成员按预先安排的顺序依次上场,具体规则如下:若某成员第一关闯关成功,则该成员继续闯第二关,否则该成员结束闯关并由下一位成员接力去闯第一关;若某成员第二关闯关成功,则该团队接力闯关活动结束,否则该成员结束闯关并由下一位成员接力去闯第二关;当第二关闯关成功或所有成员全部上场参加了闯关,该团队接力闯关活动结束.已知团队每位成员闯过第一关和第二关的概率分别为和,且每位成员闯关是否成功互不影响,每关结果也互不影响.(1)若,用表示团队闯关活动结束时上场闯关的成员人数,求的均值;(2)记团队第位成员上场且闯过第二关的概率为,集合中元素的最小值为,规定团队人数,求.2.在某公司举办的职业技能竞赛中,只有甲、乙两人晋级决赛,已知决赛第一天采用五场三胜制,即先赢三场者获胜,当天的比赛结束,决赛第二天的赛制与第一天相同.在两天的比赛中,若某位选手连胜两天,则他获得最终冠军,决赛结束,若两位选手各胜一天,则需进行第三天的比赛,第三天的比赛为三场两胜制,即先赢两场者获胜,并获得最终冠军,决赛结束.每天每场的比赛只有甲胜与乙胜两种结果,每场比赛的结果相互独立,且每场比赛甲获胜的概率均为.(1)若,求第一天比赛的总场数为4的概率;(2)若,求决出最终冠军时比赛的总场数至多为8的概率.3.为建设“书香校园”,学校图书馆对所有学生开放图书借阅,可借阅的图书分为“期刊杂志”与“文献书籍”两类.已知该校小明同学的图书借阅规律如下:第一次随机选择一类图书借阅,若前一次选择借阅“期刊杂志”,则下次也选择借阅“期刊杂志”的概率为,若前一次选择借阅“文献书籍”,则下次选择借阅“期刊杂志”的概率为.(1)设小明同学在两次借阅过程中借阅“期刊杂志”的次数为X,求X的分布列与数学期望;(2)若小明同学第二次借阅“文献书籍”,试分析他第一次借哪类图书的可能性更大,并说明理由.4.已知某种机器的电源电压U(单位:V)服从正态分布.其电压通常有3种状态:①不超过200V;②在200V~240V之间③超过240V.在上述三种状态下,该机器生产的零件为不合格品的概率分别为0.15,0.05,0.2.(1)求该机器生产的零件为不合格品的概率;(2)从该机器生产的零件中随机抽取n()件,记其中恰有2件不合格品的概率为,求取得最大值时n的值.附:若,取,.5.某商场将在“周年庆”期间举行“购物刮刮乐,龙腾旺旺来”活动,活动规则:顾客投掷3枚质地均匀的股子.若3枚骰子的点数都是奇数,则中“龙腾奖”,获得两张“刮刮乐”;若3枚骰子的点数之和为6的倍数,则中“旺旺奖”,获得一张“刮刮乐”;其他情况不获得“刮刮乐”.(1)据往年统计,顾客消费额(单位:元)服从正态分布.若某天该商场有20000位顾客,请估计该天消费额在内的人数;附:若,则.(2)已知每张“刮刮乐”刮出甲奖品的概率为,刮出乙奖品的概率为.①求顾客获得乙奖品的概率;②若顾客已获得乙奖品,求其是中“龙腾奖”而获得的概率.6.某商场在开业当天进行有奖促销活动,规定该商场购物金额前200名的顾客,均可获得3次抽奖机会.每次中奖的概率为,每次中奖与否相互不影响.中奖1次可获得100元奖金,中奖2次可获得300元奖金,中奖3次可获得500元奖金.(1)已知,求顾客甲获得了300元奖金的条件下,甲第一次抽奖就中奖的概率.(2)在(1)的条件下,已知该商场开业促销活动的经费为4.5万元,问该活动是否会超过预算?请说明理由.7.一座小桥自左向右全长100米,桥头到桥尾对应数轴上的坐标为0至100,桥上有若干士兵,一阵爆炸声后士兵们发生混乱,每个士兵爬起来后都有一个初始方向(向左或向右),所有士兵的速度都为1米每秒,中途不会主动改变方向,但小桥十分狭窄,只能容纳1人通过,假如两个士兵面对面相遇,他们无法绕过对方,此时士兵则分别转身后继续前进(不计转身时间).(1)在坐标为10,40,80处各有一个士兵,计算初始方向不同的所有情况中,3个士兵全部离开桥面的最长时间(提示:两个士兵面对面相遇并转身等价于两个士兵互相穿过且编号互换);(2)在坐标为10、20、30、……、90处各有一个士兵,初始方向向右的概率为,设最后一个士兵离开独木桥的时间为秒,求的分布列和期望;(3)若初始状态共个士兵,初始方向向右的概率为,计算自左向右的第个士兵(命名为指挥官)从他的初始方向离开小桥的概率,以及当取得最大值时取值.8.某校为高三学生举办了一场以“学宪法,做有为青年”为主题的成人礼仪式.仪式结束后学校为了了解学生对宪法的学习情况,对全体高三学生进行了一次线上测试:每位同学随机抽取3道题(均为选择题)作答.若答对2道或3道,则测试合格,否则测试不合格.若测试不合格,则需要再做20道习题进行巩固训练,已知线上测试时,小明答对每道题的概率均为,小强答对每道题的概率均为,且每道题是否答对相互独立.(1)分别求小明和小强测试合格的概率;(2)记小明、小强两位同学需要做的巩固训练的习题数之和为X,求X的分布列与数学期望.正态分布问题随机变量落在区间的概率为,即由正态曲线,过点和点的两条轴的垂线,及轴所围成的平面图形的面积,如下图中阴影部分所示,就是落在区间的概率的近似值.一般地,如果对于任何实数,,随机变量满足,则称随机变量服从正态分布.正态分布完全由参数,确定,因此正态分布常记作.如果随机变量服从正态分布,则记为.其中,参数是反映随机变量取值的平均水平的特征数,可以用样本的均值去估计;是衡量随机变量总体波动大小的特征数,可以用样本的标准差去估计.原则若,则对于任意的实数,为下图中阴影部分的面积,对于固定的和而言,该面积随着的减小而变大.这说明越小,落在区间的概率越大,即集中在周围的概率越大特别地,有;;.由,知正态总体几乎总取值于区间之内.而在此区间以外取值的概率只有,通常认为这种情况在一次试验中几乎不可能发生,即为小概率事件.在实际应用中,通常认为服从于正态分布的随机变量只取之间的值,并简称之为原则.某手机APP公司对喜欢使用该APP的用户年龄情况进行调查,随机抽取了100名喜欢使用该APP的用户,年龄均在周岁内,按照年龄分组得到如下所示的样本频率分布直方图:(1)根据频率分布直方图,估计使用该视频APP用户的平均年龄的第分位数(小数点后保留2位);(2)若所有用户年龄近似服从正态分布,其中为样本平均数的估计值,,试估计喜欢使用该APP且年龄大于61周岁的人数占所有喜欢使用该APP的比例;(3)用样本的频率估计概率,从所有喜欢使用该APP的用户中随机抽取8名用户,用表示这8名用户中恰有名用户的年龄在区间岁的概率,求取最大值时对应的的值;附:若随机变量服从正态分布,则:3D打印即快速成型技术的一种,又称增材制造,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术.中国的3D打印技术在飞机上的应用已达到规模化、工程化,处于世界领先位置.我国某企业利用3D打印技术生产飞机的某种零件,8月1日质检组从当天生产的零件中抽取了部分零件作为样本,检测每个零件的某项质量指标,得到下面的检测结果:质量指标频率(1)根据频率分布表,估计8月1日生产的该种零件的质量指标的平均值和方差(同一组的数据用该组区间的中点值作代表);(2)由频率分布表可以认为,该种零件的质量指标,其中近似为样本平均数,近似为样本方差.①若,求的值;②若8月1日该企业共生产了500件该种零件,问这500件零件中质量指标不少于的件数最有可能是多少?附参考数据:,若,则,,.某校数学组老师为了解学生数学学科核心素养整体发展水平,组织本校8000名学生进行针对性检测(检测分为初试和复试),并随机抽取了100名学生的初试成绩,绘制了频率分布直方图,如图所示.(1)根据频率分布直方图,求样本平均数的估计值;(2)若所有学生的初试成绩近似服从正态分布,其中为样本平均数的估计值,.初试成绩不低于90分的学生才能参加复试,试估计能参加复试的人数;(3)复试共三道题,规定:全部答对获得一等奖;答对两道题获得二等奖;答对一道题获得三等奖;全部答错不获奖.已知某学生进入了复试,他在复试中前两道题答对的概率均为,第三道题答对的概率为.若他获得一等奖的概率为,设他获得二等奖的概率为,求的最小值.附:若随机变昰服从正态分布,则,1.某报社组织“乡村振兴”主题征文比赛,一共收到500篇作品,由评委会给每篇作品打分,下面是从所有作品中随机抽取的9篇作品的得分:82,70,58,79,61,82,79,61,58.(1)计算样本平均数和样本方差;(2)若这次征文比赛作品的得分服从正态分布,其中和的估计值分别为样本平均数和样本方差,该报社计划给得分在前50名的作品作者评奖,则评奖的分数线约为多少分?参考数据:.2.2024年甲辰龙年春节来临之际,赤峰市某食品加工企业为了检查春节期间产品质量,抽查了一条自动包装流水线的生产情况.随机抽取该流水线上的40件产品作为样本并称出它们的质量(单位:克),质量的分组区间为,,…,,由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求质量超过515克的产品数量和样本平均值;(2)由样本估计总体,结合频率分布直方图,近似认为该产品的质量指标值服从正态分布,其中近似为(1)中的样本平均值,计算该批产品质量指标值的概率;(3)从该流水线上任取2件产品,设Y为质量超过515克的产品数量,求Y的分布列和数学期望.附:若,则,,.3.某省举办了一次高三年级化学模拟考试,其中甲市有10000名学生参考.根据经验,该省及各市本次模
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《法律知识培训教材》课件
- 电气知识技能培训课件
- 棉花喷药知识培训课件
- 2024年汽车租赁与汽车文化推广活动合作合同规范文本3篇
- 2025年度智能城市基础设施建设承包经营协议3篇
- 2024年高级护理专家聘用合同
- 养生健康知识培训课件
- 2024文艺巡回演出志愿者招募与管理服务合同3篇
- 2024年货运代理合作伙伴3篇
- 郑州电力高等专科学校《专业护理基础(二)》2023-2024学年第一学期期末试卷
- 融资服务(居间)协议带分流表参考
- 《仪器分析》课后习题答案
- 浅层气浮的工艺原理及操作
- 医疗器械风险管理计划
- 北京保险中介行业营销员增员及流动自律公约
- 柴油发电机施工方案33709
- 外来施工单位人员报备登记表完整
- 100以内加减法混合[列竖式运算练习]
- 深圳市建设工程施工围挡图集(试行版_下半部分).pdf
- 全国城市雕塑行业设计收费标准
- 质量管理组织机构及职责
评论
0/150
提交评论